Organizational Capacity and Project Dynamics

Dana Foarta Stanford GSB Michael Ting Columbia University

November, 2022

Why Can't America Build Things?

The Gateway Project will upgrade rail links between New Jersey and New York City.

- 2011: proposed by Obama administration
- •
- 2035: completion (projected)

Why Can't America Build Things?

Why Can't America Build Things?

In the world of civic projects, the first budget is really just a down payment. If people knew the real cost from the start, nothing would ever be approved. The idea is to get going. Start digging a hole and make it so big, there's no alternative to coming up with the money to fill it in.

— Willie Brown (former mayor of San Francisco) San Francisco Chronicle, July 2013

• In modern society, politicians choose policies but organizations determine governance outcomes.

- In modern society, politicians choose policies but organizations determine governance outcomes.
- Organizational capacity the ability to "get things done" is therefore crucial.

- In modern society, politicians choose policies but organizations determine governance outcomes.
- Organizational capacity the ability to "get things done" is therefore crucial.
- A rapidly emerging focus for scholars and practitioners
 - Promoted by bodies including UNDP, USAID, OECD, and the European Centre for Development Policy Management

- In modern society, politicians choose policies but organizations determine governance outcomes.
- Organizational capacity the ability to "get things done" is therefore crucial.
- A rapidly emerging focus for scholars and practitioners
 - Promoted by bodies including UNDP, USAID, OECD, and the European Centre for Development Policy Management
- How does organizational capacity interact with the political environment?
 - Outcomes of interest: size, distribution of benefits, and delay in public projects

What Is Organizational Capacity?

- Sometimes equated with:
 - 1. Inputs, such as human capital or budgets
 - 2. Outcomes, such as clients serviced

What Is Organizational Capacity?

- Sometimes equated with:
 - 1. Inputs, such as human capital or budgets
 - 2. Outcomes, such as clients serviced
- Not a well defined concept for political economy scholars

What Is Organizational Capacity?

- Sometimes equated with:
 - 1. Inputs, such as human capital or budgets
 - 2. Outcomes, such as clients serviced
- Not a well defined concept for political economy scholars
- But a common, sensible intuition: organizational capacity is good!

- 1. Capacity as an organizational process ...
 - Every project has stages
 - Capacity is how fast the bureaucracy can advance through stages

- 1. Capacity as an organizational process . . .
 - Every project has stages
 - Capacity is how fast the bureaucracy can advance through stages
 - So far, satisfies intuitive notion of what capacity does

- 1. Capacity as an organizational process . . .
 - Every project has stages
 - Capacity is how fast the bureaucracy can advance through stages
 - So far, satisfies intuitive notion of what capacity does
- 2. ... embedded in a political process
 - Opponents may use legal and regulatory tools to attempt to revise projects
 - Revisions produce costly delay and can alter the distribution of project benefits
 - Electoral transitions can introduce even bigger changes

- 1. Capacity as an organizational process . . .
 - Every project has stages
 - Capacity is how fast the bureaucracy can advance through stages
 - So far, satisfies intuitive notion of what capacity does
- 2. ... embedded in a political process
 - Opponents may use legal and regulatory tools to attempt to revise projects
 - Revisions produce costly delay and can alter the distribution of project benefits
 - Electoral transitions can introduce even bigger changes
- How do project designers account for both features?

Example: Organizational Process

- US Federal Transit Administration Capital Investment Grants (CIG) program
 - administers over \$2 billion a year in grants for joint federal-local public transportation projects

Example: Organizational Process

- US Federal Transit Administration Capital Investment Grants (CIG) program
 - administers over \$2 billion a year in grants for joint federal-local public transportation projects
- Two technical stages before construction can begin
 - 1. Project Development
 - environmental review, local government approval, preliminary funding
 - 2. Engineering
 - finalized funding, safety and geotechnical reports, design

Example: Political Process

• The US legal/institutional system provides many entry points for mobilizing interested actors, even without electoral turnover.

Example: Political Process

- The US legal/institutional system provides many entry points for mobilizing interested actors, even without electoral turnover.
 - Active judicial system
 - Local governments play roles even in "federal" projects
 - Laws
 - Federal: National Environmental Policy Act, Endangered Species Act
 - State: e.g., California Environmental Quality Act

Example: Political Process

- The US legal/institutional system provides many entry points for mobilizing interested actors, even without electoral turnover.
 - Active judicial system
 - Local governments play roles even in "federal" projects
 - Laws
 - Federal: National Environmental Policy Act, Endangered Species Act
 - State: e.g., California Environmental Quality Act
- Independent of organizational capacity, the political system generates opportunities for affecting the design and efficiency of projects.

Example: The Gateway Saga

The Gateway Project will upgrade rail links between New Jersey and New York City.

- 2011: proposed by Obama administration
- 2016: entered CIG 'Project Development' phase
- 2017: frozen by Trump administration
- 2022: re-started by Biden administration

- Two agents, A and B, discrete time t = 0, 1, 2, 3, ...
 - Period 0: A initiates project
 - Period 1, 2, ... project run by a non-strategic bureaucracy
 - No discounting

- Two agents, A and B, discrete time t = 0, 1, 2, 3, ...
 - Period 0: A initiates project
 - Period 1, 2, ... project run by a non-strategic bureaucracy
 - No discounting
- Project is completed after passing through required stages.
 - The game ends when the project is completed

- Two agents, A and B, discrete time t = 0, 1, 2, 3, ...
 - Period 0: A initiates project
 - Period 1, 2, ... project run by a non-strategic bureaucracy
 - No discounting
- Project is completed after passing through required stages.
 - The game ends when the project is completed
- Transitions of control may occur at the end of each period.
 - Not necessarily elections

- Two agents, A and B, discrete time t = 0, 1, 2, 3, ...
 - Period 0: A initiates project
 - Period 1, 2, ... project run by a non-strategic bureaucracy
 - No discounting
- Project is completed after passing through required stages.
 - The game ends when the project is completed
- Transitions of control may occur at the end of each period.
 - Not necessarily elections
- Each period, agent in control may revise an incomplete project.

• A project delivers value v > 0 per unit produced

- A project delivers value v > 0 per unit produced
- Two main characteristics
 - 1. Scale of production: s
 - 2. Benefit inequality: fraction w of benefits goes to one agent and 1-w to the other agent, i.e., $\Delta = 2w 1$.

- A project delivers value v > 0 per unit produced
- Two main characteristics
 - 1. Scale of production: s
 - 2. Benefit inequality: fraction w of benefits goes to one agent and 1-w to the other agent, i.e., $\Delta = 2w 1$.
- Project stages
 - 1. Development
 - 2. Execution, after which project is completed

- A project delivers value v > 0 per unit produced
- Two main characteristics
 - 1. Scale of production: s
 - 2. Benefit inequality: fraction w of benefits goes to one agent and 1-w to the other agent, i.e., $\Delta = 2w 1$.
- Project stages
 - 1. Development
 - 2. Execution, after which project is completed
- \bullet Each period, the project moves from development to execution with probability p
 - Capacity is parameterized by p

 \bullet Completed project produces total benefits $v\cdot s$

- Completed project produces total benefits $v \cdot s$
- Given division $w \ge 1/2$ the project payoffs may be:
 - favoring A ("type Δ^A "): fraction w to agent A, and 1-w to agent B
 - favoring B ("type Δ^B "): fraction 1-w to agent A, and w to agent B

- Completed project produces total benefits $v \cdot s$
- Given division $w \ge 1/2$ the project payoffs may be:
 - favoring A ("type Δ^A "): fraction w to agent A, and 1-w to agent B
 - favoring B ("type Δ^B "): fraction 1-w to agent A, and w to agent B
- Project incurs per-period running cost $c(s) = s^2$, for each agent (e.g., taxes).

- Completed project produces total benefits $v \cdot s$
- Given division $w \ge 1/2$ the project payoffs may be:
 - favoring A ("type Δ^{A} "): fraction w to agent A, and 1-w to agent B
 - favoring B ("type Δ^B "): fraction 1-w to agent A, and w to agent B
- Project incurs per-period running cost $c(s) = s^2$, for each agent (e.g., taxes).
- Payoff of type Δ^i project completion after \mathbb{T} periods for agent $i \in \{A, B\}$:

$$v \cdot s \cdot w - \mathbb{T} \cdot s^2$$

Model Setup: Transitions and Revisions

- With probability r, agent A has control next period.
 - With probability 1-r, agent B has control.

Model Setup: Transitions and Revisions

- With probability r, agent A has control next period.
 - With probability 1 r, agent B has control.
- Each period $t \ge 1$, the controlling agent decides whether to continue the project or to revise it.

Model Setup: Transitions and Revisions

- With probability r, agent A has control next period.
 - With probability 1-r, agent B has control.
- Each period $t \ge 1$, the controlling agent decides whether to continue the project or to revise it.
 - If continue: project moves forward with probability p.
 - If revise:
 - project progress stops (cannot move forward that period);
 - with probability q the project type switches from Δ^i to Δ^j ;
 - with probability 1-q the revision fails and project type does not change.
 - Parameter \underline{q} measures the power of regulatory review, litigation etc.

Model Setup: Transitions and Revisions

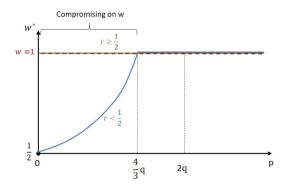
- With probability r, agent A has control next period.
 - With probability 1 r, agent B has control.
- Each period $t \ge 1$, the controlling agent decides whether to continue the project or to revise it.
 - If continue: project moves forward with probability p.
 - If revise:
 - project progress stops (cannot move forward that period);
 - with probability q the project type switches from Δ^i to Δ^j ;
 - with probability 1-q the revision fails and project type does not change.
 - Parameter q measures the power of regulatory review, litigation etc.
- A simple Markov process

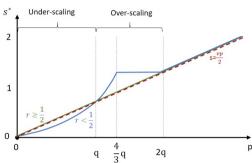
Equilibrium Concept

- We derive the Markov Perfect Equilibria (MPE) with state variables for $t \geq 1$ and unfinished project:
 - agent in control $\in \{A, B\}$
 - the current project type $\in \{\Delta^A, \Delta^B\}$
- Agent i in control at $t \geq 1$ chooses probability of revision $\sigma^i \in [0,1]$.
- Agent A at time t = 0 chooses scale $s \in [0, s^{\max}]$ and division $w \ge 0.5$.

Equilibrium Concept

- We derive the Markov Perfect Equilibria (MPE) with state variables for $t \ge 1$ and unfinished project:
 - agent in control $\in \{A, B\}$
 - the current project type $\in \{\Delta^A, \Delta^B\}$
- Agent i in control at $t \geq 1$ chooses probability of revision $\sigma^i \in [0,1]$.
- Agent A at time t = 0 chooses scale $s \in [0, s^{\max}]$ and division $w \ge 0.5$.
- Each agent chooses her best response to maximize expected payoff minus expected running costs.


- The main incentive: project designers want to avoid revisions
 - Revisions impose costly delays, and shift benefits toward the opposition


- The main incentive: project designers want to avoid revisions
 - Revisions impose costly delays, and shift benefits toward the opposition
- This produces three cases
- 1. High capacity $(p \ge 2q)$ or high stability in power (r > 1/2)
 - Completion time is short
 - Little opportunity for outside intervention
 - Designer can choose her ideal project, giving opposition nothing
 - Large and unequal

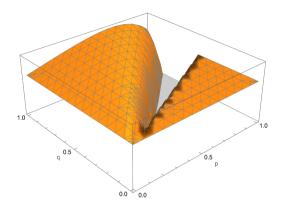
- 1. Medium capacity and low stability $(p \in [q, 2q), r < 1/2)$
 - Greater risk of outside intervention
 - Over-scale projects to make delay costlier ("too big to fail")
 - Distribute some benefits to opposition
 - Bad outcomes: relatively unequal, inefficiently large

- 1. Medium capacity and low stability $(p \in [q, 2q), r < 1/2)$
 - Greater risk of outside intervention
 - Over-scale projects to make delay costlier ("too big to fail")
 - Distribute some benefits to opposition
 - Bad outcomes: relatively unequal, inefficiently large
- 2. Low capacity and low stability (p < q, r < 1/2)
 - Over-scaling too costly because completion times are long
 - Instead, under-scale and divide project benefits more equally

Equilibrium: Distribution and Scale

Additional Results: Political Environment and Delays

- What happens as the political/legal system makes revisions easier (q increases)?
 - Under-scaling and over-scaling regions of p "expand"


Additional Results: Political Environment and Delays

- What happens as the political/legal system makes revisions easier (q increases)?
 - Under-scaling and over-scaling regions of p "expand"
- What causes dilatory revisions?
 - If budgets or other restrictions make over-scaling impossible, then revisions result.
 - Higher capacity exacerbates this by increasing the benefit of revisions.

Additional Results: Political Environment and Delays

- What happens as the political/legal system makes revisions easier (q increases)?
 - Under-scaling and over-scaling regions of p "expand"
- What causes dilatory revisions?
 - If budgets or other restrictions make over-scaling impossible, then revisions result.
 - Higher capacity exacerbates this by increasing the benefit of revisions.
- What if projects require multiple phases?
 - Suppose projects require an initial "investment" phase.
 - Politicians may worry that successors will exploit their investments and design an undesirable final project.
 - Result: under-investment, possible cancellation of over-scaled projects.

Welfare: Don't Fall in the Valley

- Welfare: over-scaled projects are bad.
 - Happens when p and q "match"
 - High capacity, high institutional constraint systems most vulnerable

Application

- Our story is consistent with the arc of US institutional and infrastructure development in the 20th century (Altshuler and Luberoff 2003).
 - post-World War II: few institutional constraints (low q), large projects
 - Boston Central Artery

Application

- Our story is consistent with the arc of US institutional and infrastructure development in the 20th century (Altshuler and Luberoff 2003).
 - post-World War II: few institutional constraints (low q), large projects
 - Boston Central Artery
 - 1960s-1980s: environmental movement introduces legal constraints (high q), leading to many delays and cancellations
 - New York Westway

Application

- Our story is consistent with the arc of US institutional and infrastructure development in the 20th century (Altshuler and Luberoff 2003).
 - post-World War II: few institutional constraints (low q), large projects
 - Boston Central Artery
 - 1960s-1980s: environmental movement introduces legal constraints (high q), leading to many delays and cancellations
 - New York Westway
 - Late 20th century: return of "mega projects," often with greater attention toward distributive concerns
 - Boston Central Artery / Tunnel (the "Big Dig")

Discussion

- Working definition of organizational capacity
 - Ability to move from one project stage to the next
 - Corresponds to personnel, capital, other resources
 - In isolation, high capacity increases speed and reduces variability of implementation
- Interaction between capacity and institutions
 - Size and equality of project designs
 - Revisions, cancellations, delays, and under-investment
- What works?
 - Mismatching capacity and institutional constraints
 - Low capacity \Rightarrow high constraints
 - High capacity \Rightarrow low constraints