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Abstract

This paper provides a dynamic theory of the effects of organizational capacity on

public policy. Consistent with prevailing accounts, a bureaucratic organization with

higher capacity, i.e., a better ability to get things done, is more likely to deliver projects

in a timely, predictable, or efficient fashion. However, capacity also interacts with

political institutions to produce far-reaching implications for the size and distribution

of public projects. Capacity-induced delays and institutional porousness can allow

future political opponents to revise projects in their favor. In response, politicians

design projects to avoid revisions, for example by equalizing distributive benefits, or by

over-scaling projects. We show that higher organizational capacity can increase project

size, inequalities in the distribution of project benefits, and delays. The capacity levels

that minimize social benefits increases with the extent of institutional constraints,

suggesting that political systems with high capacity and high institutional constraints

are especially vulnerable to inefficient projects.
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1 Introduction

It is now a truism that organizations are crucial for the outcome of government policies in

modern society. Election candidates can make platform promises and legislators can pass

laws, but a massive bureaucratic machinery is needed to translate statutes into on-the-

ground results.1 Capturing organizational performance is obviously a formidable task, but

practitioners and scholars have increasingly coalesced around the concept of organizational

capacity as a central determinant. Bodies as varied as the UNDP, USAID, OECD (2011),

and the European Centre for Development Policy Management (2011) identify organizational

capacity as a key development objective, and scholarly mentions of the term have increased

sharply since the 1990s.2

The appeal of organizational capacity is clear. Higher capacity — loosely speaking, a

better ability to “get things done” — should produce policy outputs that are more timely,

more efficient, or of higher quality. Consistent with this perspective, a wide variety of

studies have shown that organizations that are under-resourced, under-paid, or prone to

political interference produce worse results (e.g., Derthick, 1990; Rauch and Evans, 2000;

Gorodnichenko and Peter, 2007; Propper and Van Reenen, 2010). Yet in many political

settings, the implications of capacity are less obvious. To take a simple example, suppose that

a political system gives broad legal standing to actors who have environmental objections to a

construction project. In this setting, a high-capacity bureaucracy might actually encourage

litigation and its attendant delays, since victorious litigants can be confident that their

proposals will be implemented quickly.

This paper develops a dynamic theory of policy-making that jointly considers organiza-

1The Organisation for Economic Co-operation and Development estimates that as of 2019, government
entities accounted for an average of 18% of member country employment (OECD, 2021).

2See “Capacity Development: A UNDP Primer,” USAID’s “Measuring Organizational Capacity.” As of
August 2022, Google Scholar returned about 4,880 results for “organizational capacity” between 1990 and
1999, 16,000 between 2000 and 2009, 23,400 between 2010 and 2019, and 14,600 since 2020.

2

https://www.undp.org/publications/capacity-development-undp-primer
https://usaidlearninglab.org/resources/measuring-organizational-capacity


tional capacity and its political and institutional context. Its main objective is to show how

these features combine to affect the planning and execution of public policies, in terms of

scale, distribution of benefits, and delays. While many elements of our model are standard,

the principal hurdle in any such effort is the lack of consensus about how to characterize

organizational capacity. A predominant approach in empirical research is to treat capac-

ity as an input into organizational production functions. Such inputs include information

(Lee and Zhang, 2017) and perhaps most prominently, human capital (Brown et al., 2009;

Dal Bó et al., 2013; Acemoglu et al., 2015; Bolton et al., 2016). Theoretical efforts have thus

far adopted widely divergent perspectives on how to incorporate the concept into standard

political economy frameworks, ranging from the variance of policy outcomes (Huber and

McCarty, 2004), policy valence (Ting, 2011), to agency cost structures (Foarta, 2022).

Our conceptualization of capacity blends many of the insights of existing approaches. Its

basis is a discrete Markov process representation of policy projects. Completing a project

requires traversing a sequence of bureaucratic stages. Criminal prosecutions might start

with an investigative stage and end with a trial. As DiIulio (2014) observes, US federal

contracting also consists of a series of distinct stages:

[T]he federal contracting process has three separate but related parts: (1)

planning (how federal agencies decide what and how much to contract for, when

they need given goods or services to be delivered, and what terms and conditions

are they subject to); (2) awarding (the background market research, the com-

munications and outreach to prospective contractors, the budgetary criteria, and

the precise procedures for awarding competitive bids or making noncompetitive

selections); and (3) overseeing (everything from routine reporting requirements

to financial audits, field inspections, public comments, and impact studies).

Capacity is the probability p of progressing from each stage to the next. With probability
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1− p, the project does not progress. Benefits are realized upon completion, but each period

before completion imposes costs that are increasing in the project’s scale. Thus in the

absence of renegotiation or political interference, an agency with higher capacity — due to

better personnel or technology — reduces costs and variability in delivery times.

The model embeds this process in an institutional environment that gives access to po-

litical opponents. At the inception of a project, a politician from one group chooses its

scale and an initial distribution of benefits between its group and an opposing group. This

distribution may represent a siting choice, or the selection of contractors. After the project

begins, groups randomly receive opportunities to attempt to revise the project. Depending

on the political system, these opportunities can arise from various sources, for example the

election of new politicians or the mobilization of NIMBY groups. Attempting a revision

delays project completion by automatically pausing progress, and the revision itself succeeds

with some probability that corresponds to the openness of the institutional environment to

outside intervention. This openness reflects factors such as contracting regulations, the judi-

cial system, or administrative procedures such as the US National Environmental Policy Act

(NEPA) review process. A successful revision changes the project’s distribution of payoffs

to favor the revising party. The original project designer must then take the possibility of

strategic revisions into account in choosing the project’s scale and payoff split; in particular,

one liability of low capacity is the increased opportunity for political intervention during the

course of project execution.

A principal attraction of this formulation is its correspondence to the operational realities

of implementing many public policies. A good example is the process of constructing large

infrastructure projects in the US.3 The federal government’s main mechanism for support-

ing significant public transportation projects is the Federal Transit Administration (FTA)

3The Federal Infrastructure Projects Permitting Dashboard tracks the progress of federally-funded in-
frastructure projects across major permitting requirements. The Center for an Urban Future provides an
overview of the key phases and sources of delay for capital construction projects in New York City.
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Capital Investment Grants (CIG) program. CIG administers over $2 billion a year through

a competitive grant process, whereby state or local transit agencies propose cost-sharing

collaborations with the FTA. Applications must traverse two stages of FTA review before

construction can begin. The first, “Project Development,” requires a completed NEPA re-

view, approval by local authorities, and secured commitments for at least 30% of non-federal

funds. The second, “Engineering,” finalizes funding sources and design details, including

geotechnical and safety hazard reports. Each phase can be a lengthy undertaking, thus

exposing projects to both lawsuits and political turnover.

We find that the interaction between capacity and the institutional environment has

significant implications for public projects. Consider starting from a benchmark in which the

opposition group never has an opportunity to attempt a revision. In this case, higher capacity

has the straightforward effects of reducing completion time and costs, thereby increasing

project scale. The initiating politician furthermore awards herself the entire benefit of the

project. If the opposition group is given the opportunity to attempt a revision, then the

threat of the project being revised has two possible effects. First, it encourages the project

initator to design a larger project. The high running costs of such a project deter revisions

due to the prohibitive escalations in total costs. Second, it encourages more equal payoff

divisions, as these reduce the gains from revisions. These detterence effects matter only to

politicians who are relatively likely to face future revision attempts: the side that is unlikely

to have revision opportunities will typically not attempt revisions, since their revisions are

likely to be reversed. Thus, a politically favored initial politician can achieve her benchmark

ideal policy, but an unfavored politician is more likely to distort the size and distribution of its

projects in order to avoid revisions. When capacity is very low, unfavored politicians choose

more egalitarian distributions and (to compensate for the reduced project gains) under-scaled

projects. As capacity increases, they claim an increasing share of project benefits and switch

to over-scaling. In all cases, high capacity results in winner-take-all allocations.
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These results feature no politically-induced delays in equilibrium, but they assume that

politicians can freely choose any project scale. Also, they assume that scale increases do not

augment running costs so much as to make the project altogether undesirable. In practice,

both of these concerns are may be present. Scales are often constrained by budgets or

physical limitations. Even when physically possible, increasing scale may lead to rapidly

raising costs (if the cost function is very elastic). Such conditions could make an over-

scaling strategy unattainable. Modest scales and high capacity imply low running costs,

and thereby encourage revisions. The surprising implication is that higher capacity produces

greater obstruction and delay.

The adjustments that project designers make to avoid revisions have important impli-

cations for social welfare. Under-scaled and benchmark projects generally provide greater

benefits than costs to society, but the agents can collectively do much worse in expectation

when projects are over-scaled. In addition to depending on capacity, over-scaling depends

on its “match” with the ease of outside intervention. A political system with high capacity

and openness is most prone to over-scaling, while systems with mismatched capacity and

openness will be less so.

We finally explore a variant of the model with a more complex project that requires two

phases. Here, scales are chosen independently the initial incumbent politician in each phase

and the output of the first phase is an “investment” that reduces costs for the final project

in the second. The main result is that the first project initiator may now invest nothing and

effectively cancel a project if it worries about possible over-scaling by the opponent. Thus,

the prospect of setting project parameters mid-stream can force politicians to internalize

welfare consequences to some degree.

Related Literature. The main contribution of this paper is its formalization of organiza-

tional capacity as part of a dynamic political process. The execution of policy in our model
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generates measurable outcomes such as the size, timing, cost, and distributive dimensions

of public projects. Several important lines of theoretical work have used related notions of

capacity to explore different policy questions. Perhaps most prominently, a recent literature

on “state capacity” addresses the ability of the state to achieve macro-objectives such as

tax collection and law enforcement (Besley and Persson, 2009; Johnson and Koyama, 2017).

One emphasis of this work is the creation of capacity in the shadow of political transitions.

By contrast, we address policy-making at the organizational level, taking capacity as given.

The granular focus on organizations can be useful because, as many observers have noted,

organizational capabilities can vary greatly within a country (Carpenter, 2001).

A series of models by Huber and McCarty (2004, 2006) situates bureaucratic capacity in

an explicit institutional setting. They examine the relationship between a legislative prin-

cipal and a bureaucratic agent, and represent capacity as the variance of possible outcomes

following a bureaucratic policy choice. The outcome space in these models is ideological,

and the primary outputs include delegation, compliance, and whether legislation is possible.

Other institutional theories that model capacity as costs include Foarta (2022) and Turner

(2020), who analyze a dynamic electoral setting and policy-making in a separation of powers

system, respectively. Aside from a different set of outcomes, one contribution of the present

paper is a formalization of organizational capacity that can generate both variance and costs.

Finally, a now extensive set of theoretical models addresses the dynamics of long-term

policies (e.g., Baron, 1996; Battaglini et al., 2012). Similarly, a growing contracting literature

studies the optimal provision of incentives in dynamic environments with multiple stage

projects (e.g., Toxvaerd, 2006; Green and Taylor, 2016; Feng et al., 2021). Yet, there is little

theoretical work on the political economy of large multistage public investments.4

4Focusing on transportation projects specifically, Glaeser and Ponzetto (2018) develop a simple model
of project scale, focusing on voter inattention as the driver for politicians to propose very large projects:
increased voter attention to local negative externalities leads to reductions in project scale, and is consistent
with evidence of positive correlation between voter education and highway costs.
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2 Examples and Motivating Cases

The parameters and mechanisms of our model map into commonly observed features of

bureaucracies and public projects. In this section we provide examples of how some of the

main components of the model have appeared in the implementation of public policies.

Capacity and Delays. Our p parameter captures an organization’s ability to solve dis-

crete problems. This parameter perhaps corresponds mostly closely with prevailing empirical

notions of capacity, which often emphasize human capital. There are numerous examples

of shortfalls in human capital reducing bureaucratic productivity. Understaffing at the US

Office of Information and Regulatory Affairs has been shown to delay the issuance of fed-

eral rules, including the Biden administration’s current efforts to update energy efficiency

standards for lighting and appliances (Bolton et al., 2016).5 DiIulio (2014) observes that the

hiring of 3,500 highly trained acquisition personnel between 2010 and 2013 greatly improved

on-time performance of contracting tasks at the US Department of Defense.

Revisions and Distribution. Even the most competent public organizations—fully staffed

with well-trained, well-paid, and uncorrupt bureaucrats, and equipped with modern technology—

face political scrutiny in executing their tasks. As projects become large and politically

prominent, the opportunities for political intervention multiply, and especially so in decen-

tralized institutional systems (Pressman and Wildavsky, 1984). While elections play an

obvious role, academic and policy observers have also increasingly focused on non-electoral

mechanisms such as NEPA or California Environmental Quality Act reviews as sources of

delay, and cost inflation in US infrastructure construction (Smith et al., 1999; Brooks and

5See Anna Phillips, “Biden faces delays in undoing Trump’s war on efficient dishwashers, dryers and
lightbulbs that made him ‘look orange’.” Washington Post, January 9, 2022.
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Liscow, 2021; Mehrotra et al., 2019).6

Altshuler and Luberoff (2003) document multiple examples of political interventions that

altered the distribution of payoffs of major infrastructure projects. The design of the Boston

Central Artery/Tunnel Project (better known as the “Big Dig”) was adjusted numerous

times in response to state and federal officials, as well as to litigation threats over environ-

mental impacts. Modifications addressed issues such as tunnel size, public transportation,

air quality, land takings, parking, and interchange design, and contributed to raising the

tunnel’s estimated cost from $3.1 billion to $5.2 billion between 1987 and 1991. In 1970s

Atlanta, mayor Maynard Jackson successfully moved the construction a new airport to a site

closer to his political base in the south of the city, and also won set-asides for minority-owned

firms.

Project Design. Altshuler and Luberoff (2003) observe that mid-20th century American

infrastructure projects faced unprecedented political challenges, often from mobilized interest

groups. In response, late-20th century projects both spread payoffs across a wider base of

constituents and expanded in size. While they do not specifically invoke the equilibrium

logic of our model, these tactics correspond to the ways in which its project designers avoid

costly revisions.

3 Model

Consider an environment with infinite, discrete time, t = 0, 1, 2.... There are two agents,

A and B, representing two distinct political constituencies. Agent A is in control of policy

at time 0, and may be thought of as a politician in power at that time. Agent B is the

opposition, either another politician or an outside interest group opposed to A. Agent A

6The NYU Transit Costs Project provides a useful overview of the factors that drive transportation costs
in modern infrastructure projects.
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initiates a long-term project at time 0. Once initiated, the project is run by a bureaucratic

agency, and it must go through several stages before reaching completion. The bureaucracy

is a non-strategic player. It works at its maximum capacity to move the project through

the required stages, where each stages lasts at least a period. At the end of each period, a

transition in control may occur, and the new agent in may attempt to change aspects of the

incomplete project. The game ends when the project is completed.

The Project. A public project delivers value v > 0 per unit produced. It has two main

characteristics which are chosen at its initial conception: (1) the scale s, i.e., the number

of units that are produced, and (2) the split of the benefits between the two agents: the

fraction w ≥ 0.5 of benefits that goes to one agent, and the fraction 1− w that goes to the

other. The project inequality is therefore captured by ∆ = 2w − 1 ∈ [0, 1], where ∆ = 1 is

maximum inequality and ∆ = 0 is the equal division of benefits. The project starts in stage

d (the development stage), and it must reach stage e (execution) in order to be completed.

The project delivers its benefits only upon completion. Progression from one stage to the

next depends on the organizational capacity of the bureaucracy. The higher is the capacity of

the bureaucracy, the faster it can overcome the hurdles needed in order to move the project

forward. We parameterize the capacity of the bureaucracy by p, the probability with which

the project moves from stage d to stage e in any given period. With probability 1 − p, the

project does not progress that period. Every period spent in stage d costs each agent c(s),

where we assume the following about the cost function:

Assumption 1 The cost function satisfies c′(s) > 0, c′′(s) > 0, c(0) = 0, and has elasticity

ε(s) ≡ c′(s) · s
c(s)

≥ 1.

The project cost c(s) is incurred by each agent every period while the project is running.
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This captures in reduced from the use of general tax revenue for public projects, regardless

of the final division of benefits from these projects. The cost is increasing and convex in s.

Its elasticity with respect to s, ε(s) is larger than 1 to ensure that c(s)
s

is increasing in s, i.e.,

larger projects are relatively costlier.

Transitions of Control and Revisions. At the beginning of period 0, agent A chooses

the scale of s and fraction w (implicitly the benefit inequality ∆), where agent A receives

fraction w of v · s and agent B receives fraction 1 − w. We refer to this distribution of

benefits as the project of type ∆A, as the benefit inequality favors agent A, and denote by

∆B the project where fraction w of the benefit goes to agent B. At the end of each period t,

control over policy may change. With probability r, agent A has control next period. With

probability 1 − r, agent B gets control. The agent in control may then choose to trigger

a project revision. Once triggered, a revision freezes the project for the current period, so

that it cannot advance to the next stage. With probability q, the revision is successful and

it changes the project type, so that the agent in control receive fraction w of the value.

There is no additional cost of triggering a review. The probability of a successful revision,

q, captures in reduced form the insitutional or legal ease to win appeals or amend ongoing

projects.

Payoffs. A project of type ∆i completed after T periods has payoff to agent i ∈ {A,B}

w · v · s− T · c(s). (1)

Timing. To summarize, the timing is as follows. In period 0, agent A, the politician in

control, starts a project and chooses its scale s and payoff inequality ∆. In each period t ≥ 1,

while the project is in stage d:
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1. With probability r, agent A has control over the project; with probability 1− r, agent

B has control.

2. The agent in control chooses whether to trigger a revision.

3. If a revision is triggered, it succeeds with probability q, and the project type switches

from ∆i to ∆j, where i 6= j; with probability 1− q the revision fails, the project type

does not change, and the project remains in stage d for the period.

4. If a revision is not triggered, then the project moves to stage e with probability p; with

probability 1− p it remains in stage d for the period.

5. Each agent pays the project operating cost c(s) for the period.

Once the project reaches stage e, its benefits are realized given the current project type.

There is no discounting between periods.

Equilibrium Concept. We derive the Markov Perfect Equilibria of this game with state

variables for periods t ≥ 1 being the current project stage St ∈ {d, e}, the agent Pt ∈ {A,B}

who has control over the project, and the project type ∆i ∈ {∆A,∆B}. In period 0, the

state variable is P0 = A. Each period t ≥ 1, agent Pt in control chooses a probability of

revision σPt(∆i) ∈ [0, 1] to maximize her expected utility. In period 0, agent P0 chooses s

and w to maximize her expected utility.

We note that any strategy in which an incumbent i revises a project of type i is weakly

dominated. Thus, σi(∆i) = 0, and simplify notation by denoting σi ≡ σi(∆j), for i 6= j.

4 Benchmarks

Our model captures two key aspects of long-term public projects. First, the project initiator

has the freedom to establish key project characteristics, as its size and distribution of benefits
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across constituencies. Second, opposition politicians or groups have opportunities to modify

the project. To understand what these aspects mean for the initial setup and the dynamics

of projects, we first analyze two benchmark cases, where these aspects are fully or partially

removed.

4.1 The Social Planner Solution

We start with the case in which the project is started and managed by a social planner who

maximizes the average utility of the two agents. Under the social planner benchmark, there

is no inequality in payoffs (∆ = 0) and no transitions of control. The social planner chooses

s to solve

max
s∈[0,smax]

v · s− T(p) · 2 · c(s), (2)

where T(p) is the expected time until the project reaches stage e given bureaucratic capacity

p. That implies T(p) = 1
p
. The socially optimal size of the project is then given by

c′(sSP ) =
vp

2
. (3)

4.2 No Transitions of Control

The second benchmark is the one where there are no transitions (r = 1), so that agent

A starts in control in period 0 and remains in control until the project reaches execution.

This implies that agent A never revises the project on the equilibrium path, and she chooses

w ∈ [0, 1] and s ∈ [0, smax] to maximize

max
s,w

w · v · s− T(p) · c(s), (4)
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where, as above, T(p) = 1
p
. Agent A will choose a project that delivers all the benefits to

herself (∆ = 1) and scale given by

c′(sNT ) = vp. (5)

Agent A does not internalize the cost borne by Agent B, and therefore increases the scale

compared to the social planner.

5 Public Projects under Transitions of Control

We now move to analyzing the full model, highlighting the role that bureaucratic capacity

and transitions of control play in determining the project scale and distribution of benefits.

Turnover in control opens the path of project revisions, and therefore to delays in project

progress. This translates to longer time to project completion and higher running costs. The

key to our analysis will be to understand if and when revisions occur and what that implies

for the initial characteristics of projects. On the one hand, the expectation of higher running

costs due to revisions should decrease the initial scale chosen in period 0 and increase benefit

inequality ∆, as each revision can swing the project in one’s favor. On the other hand,

increasing the initial scale or reducing ∆ could be used strategically to discourage revisions.

To solve for the equilibrium project scale, distribution of benefits, and the path of revi-

sions, we break up the problem into two main steps. First, for a given scale s and payoff

inequality ∆, we find the optimal revision strategy for each agent in period t ≥ 1. Second,

we find the s and ∆chosen by agent A at time 0 given the expected continuation play.

5.1 The Revision Response

Assume a fixed s and w. In each period t ≥ 1, the project’s evolution into the next period

can be represented as a Markov Process with six states, given the possible combination
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of stage, controlling agent, and project type. The probability of the project moving from

its current state to any of the possible states depends on the probability of a transition,r,

the bureaucracy’s capacity to move the project to the execution stage,p, and the revision

probabilities σA and σB. A project at stage e is in an absorbing state, with payoffs given its

type, ∆A or ∆B. The Markov process is represented in matrix form in Figure 1.

Starting in a state (d, i,∆k) with agent i in control and project type ∆k, the Markov

transition probabilities imply an expected probability of reaching stage e with project type

∆` of P(e,∆`|d, i,∆k) and an expected number of periods needed to reach stage (e,∆`) of

T(e,∆`|d, i,∆k). We can use these objects to compute the expected utility for each agent,

starting from any project stage, for revision strategies σA and σB. For agent A, the expected

utility given controlling agent i ∈ {A,B} and current project type ∆k is:

UA(i,∆k) = P(e,∆A) · w · v · s+ P(e,∆B) · (1− w) · v · s

− [P(e,∆A) · T(e,∆A) + P(e,∆B) · T(e,∆B)] · c(s). (6)

For agent B, the only difference is in the payoffs at each terminal state: fraction 1 − w of

v · s at (e,∆A) and fraction w at (e,∆B).

Given revision probability σi, where i ∈ {A,B}, agent j 6= i prefers to revise if her

expected utility from doing so is higher than the expected utility from continuing with the

current project type. Revisions will be less likely as the scale of the project increases, and

running costs increase with it. In the Appendix, we show formally that there exist cutoffs

s1 ≤ s2 ≤ s3 that determine the revision strategies:
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Lemma 1 There exist thresholds s1, s2, s3 such that in any period t ≥ 1, the MPE is

• If c(s)
s
≤ c(s3)

s3
, then the project is revised every time the opposition gains control: σA =

σB = 1.

• If c(s3)
s3

< s ≤ c(s2)
s2

, then the project is revised only by the electorally advantaged agent

σA = 1, σB = 0 if r ≥ 1
2
, and σA = 0, σB = 1 if r < 1

2
;

• If c(s2)
s2

< s < c(s1)
s1

, then either exactly one agent revises (σA = 1, σB = 0 or σA =

0, σB = 1) or there is a mixed strategy equilibrium with σA, σB ∈ (0, 1).

• If s ≥ c(s1)
s1

, then the project is never revised: σA = σB = 0;

The equilibrium regions are represented in Figure 2. As shown in the Appendix, the threshold

values are given by

c(s1)

s1

= qv∆, (7)

c(s2)

s2

= qv∆ ·max

{
pr

pr + 2q(1− r)
,

p(1− r)
p(1− r) + 2qr

}
, (8)

c(s3)

s3

= qv∆ ·min

{
pr

pr + 2q(1− r)
,

p(1− r)
p(1− r) + 2qr

}
. (9)

The intuition for this result comes down to the trade-off implied by a revision: a successful

revision leads to a change in payoffs of vs∆; yet, it comes at the cost of project delays,

with total costs proportional to c(s). If s is relatively large, then any delay generated by

a revision is too costly, regardless of whether the other agent would also revise, and so no

agent revises. If s is small, then the implied delay is not too costly relative to the benefit

of changing the project payoffs, even if the other agent also revises. Then, continuing the

project is preferable. The threshold at which s is too large to continue is higher for the agent

with the higher probability of control in the future, as this agent expects a higher chance of
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Figure 2: Equilibrium Revision Strategies given s and w
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Note: Dashed lines depict σA and solid lines depict σB given r = 0.6 (Panel a) and r = 0.4
(Panel b), and v = 3, q = 0.25, p = 0.5, w = 1.

reaching execution of her preferred project type. Hence, her expected payoff relative to the

running cost is higher.

The MPE in each period t ≥ 1 is unique outside the (s2, s1) interval. The region of

equilibrium multiplicity is the region where profitability of one’s revisions depends on the

other agent’s revision strategy. If only one agent revises, while the other does not, the

expected delays are not too costly relative to their expected benefit; however, the expected

cost would be too high if both agents were to revise or the expected cost would be too low if

both agents were to continue. As we will show below, our qualitative results do not depend

on the equilibrium selection in this multiplicity region.

5.2 How Bureaucratic Capacity Feeds Bank into Project Setup

Given the predicted revision response to the project, agent A in period 0 chooses the scale s

and division w (i.e., the inequality ∆) in order to maximize her expected utility given that
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the starting project is of type ∆A:

EUA(s, w) = r · UA(A,∆A) + (1− r) · UA(B,∆A). (10)

Given the strategies described in Lemma 1 the expected utility in any of the pure strategy

equilibria can be be expressed as

EUA(s, w) = [H1(q, p, r) · w +H2(q, p, r) · (1− w)] · s · v − c(s)

p
·H3(q, p, r), (11)

where H1(q, p, r), H2(q, p, r) and H3(q, p, r) are functions of q, p, r, with expressions given

in the Appendix. They parameterize, respectively, the probability of agent A obtaining

fraction w of the project benefits, the probability of this agent obtaining fraction 1−w, and

the expected delay in the project’s completion. This formulation shows that the expected

utility is piecewise linear in w and concave in s. Our main results describe how project

characteristics are determined by the cost structure and bureaucratic capacity. We first

show that scale is strategically used by the project initiator to preclude revisions:

Proposition 1 (Equilibrium Revisions) There exists upper bound ε(s) ≥ 4 on the elas-

ticity of the cost function c(s) such that for ε(s) ≤ ε(s), there are no revisions on the

equilibrium path and the equilibrium project type is ∆A.

The project’s initiator optimally designs its characteristics to avoid revisions down the line.

The two tools at her disposal are the project scale and its division of benefits. In order

to use these tools to discourage revisions, the cost of increasing scale must not increase

too fast. Otherwise, any attempt to strategically increase scale beyond the point at which

revisions are desirable would also make the entire project too expensive to build, even for

politician A. Before discussing the construction of the equilibrium, we also state how project

characteristics are mediated by bureaucratic organizational capacity.
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Proposition 2 (Scale and Payoff Inequality) When ε(s) ≤ ε(s), the equilibrium scale

s∗ and payoff division w∗ depend on p relative to two thresholds of q:

• (Unconstrained regime) If p > q(ε, r, q), then w∗ = 1 and s∗ = sNT .

• (Over-scaling regime) If p ∈ [q, q(ε, r, q)], then w∗ ≤ 1 and s∗ > sNT .

• (Under-scaling regime) If p < q, then w∗ < 1 and s∗ < sNT .

The threshold q takes the following form:7

q =


q ·
(
ε(s3)− 2r

1−r

)
if r ≥ 1

2

q · ε(s1) if r < 1
2

. (12)

Notice that these expressions take a very simple form under a quadratic cost function: if

r ≥ 1/2, then q < 0, whereas if r < 1/2, then q = 2q.

The project’s initiator optimally designs its characteristics to avoid revisions down the

line. The two tools at her disposal are the project scale and its division of benefits. How

these tools should be wielded depends on what is likely to happen once the project is under

way. This in turn is a function of the bureaucracy’s capacity to move the project along,

captured by p, and of the likelihood that the project is successfully revised by a challenger.

To show the trade-offs involved in using scale or payoff inequality strategically, it is helpful

to consider them sequentially.

The expected duration of the project, and hence its expected running cost is determined

directly by the bureaucracy’s organizational capacity. When capacity is high, the expected

run time is short, and therefore the revision-deterring benefit of a large scale outweighs the

increase in running costs. This allows agent A to choose a large scale, and this alone is

7These expressions are for the case when the equilibrium selected in the region of multiplicity is not
(σA, σB) = (1, 0) if r < 1/2. The expressions if the alternative equilibrium is selected in the multiplicity
region are slightly more complicated are given in the Appendix.
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enough to deter revisions, without the need to compromise on w. In fact, the project scale

can be as large as the one chosen by the agent in the benchmark without transitions of

control.

As capacity decreases, the expected project run time and associated costs increase. How

much revisions pose a threat, and therefore how much scale must be increased to deter them

depends on how likely the opposition is to trigger them. If the probability that the opposition

takes control is small (r > 1/2), then the revision threat remains sufficiently low such that

scale alone deters the danger, even when set at agent A′s ideal.

The calculus changes when the probability that the opposition takes control is large

(r < 1/2). With intermediate capacity, the expected run costs are higher, and agent A would

ideally reduce the scale to adjust for these higher costs. Yet, in order to deter revisions by

B, she must keep the scale large enough. This results in over-scaling of the project, so that

s∗ > sNT . Finally, if capacity drops even more, setting a large project scale in order to deter

revisions becomes too costly, as the project is expected to run for a long time in stage d.

Agent A can save on scale increases by compromising on w as well. She offers B enough

benefits so as to reduce the gains from a revision. As she gives away more benefits to B, the

relative cost of running a large scale project further increases. This drives to under-scaling

of the project relative to agent A′s unconstrained ideal sNT . We illustrate the equilibrium

w and s in Figure 3.

Proposition 2 implies that higher capacity increases project scale but also the inequality

in payoff division.

Corollary 1 (Effect of Higher Capacity) Higher organizational capacity p increases equi-

librium scale s and payoff inequality ∆.

As project run times are expected to be faster, the project initiator harness capacity to her

advantage: she uses it to make projects larger and to divide the benefits more unequally.
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Figure 3: Equilibrium Project Characteristics

Note: Equilibrium w (left panel) and s (right panel) for r = 0.6 (green), r = 0.4 (blue), and v = 5, q = 0.25.

The red dashed line shows the scale and the payoff division under no transitions.

5.3 Project Revisions in Equilibrium

So far, we have shown what happens when agent A has full flexibility to scale the project, and

she uses this tool in order to deter revisions in equilibrium. She can successfully deploy this

tool as long as the cost structure allows relatively affordable scaling, as shown in Proposition

1. Yet, if the maximum scale of the project is limited, either by budget rules or by a highly

convex cost structure, then revisions may not be avoidable on the equilibrium path.

First, consider the case where the maximum project for the project, smax, is not large

enough to accommodate the needed over-scaling. Then, revisions cannot be avoided.

Proposition 3 (Limited Scale and Equilibrium Revisions) There exists threshold value

sM(p) such that, if smax ≤ sM(p), then the equilibrium project scale is smax if capacity is at

least p, the equilibrium payoff inequality is maximal, ∆ = 1, and there are revisions on the

equilibrium path: each incumbent revises a project favorable to their opponent.

The result is illustrated in Figures 4. Agent A uses scale to strategically deter revisions, up

until the needed scale reaches the ceiling smax. At that point, the strategic use of scale is

exhausted. Moreover, if the ceiling smax is sufficiently low, the cost of delays is negligible
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Figure 4: Limited Scale and Revision

Note: Equilibrium s for r = 0.6 (green), r = 0.4 (blue), and v = 5, q = 0.25. The red dashed line shows the

scale and the payoff division under no transitions. The back dashed line shows the scale upper limit smax.

relative to the potential gain from a revision. In this case, any compromise on the payoff

division in order to deter revisions would have to be exceedingly large. Agent A then prefers

to claim all benefits for herself and enter a ‘winner-take-all’ regime where everyone revises

the project in their favor.

Corollary 2 (Higher Capacity under Scale Constraints) If project scale is limited, higher

organizational capacity p increases the probability of project revisions and delays.

While p is small, agent A is under-scaling and compromising, such that both s and w are

reduced in order to avoid revisions. Yet, as p increases, revisions become less costly. To

discourage them, agent A would have to over-scale the project. As she hits the scale limit

smax, revisions are no longer avoidable. The game switches to a contest with maximal

inequality in payoff division, where each incumbent attempts to revise their opponent’s

project. This equilibrium reduces agent A′s welfare relative to the outcome without scale

limitations.
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Another potential driver of revisions in equilibrium is a cost structure that makes over-

scaling unsustainable. If ε(s) is very large, then increasing s in order to deter revisions is

too costly, and revisions cannot be avoided in equilibrium.

Proposition 4 (Cost Structure and Equilibrium Revisions) For large ε(s), then the

equilibrium payoff inequality is maximal, ∆ = 1, and there are revisions on the equilibrium

path: each incumbent revises a project favorable to their opponent.

A cost function with high elasticity limits how much politician A can increase scale. A small

increase in scale is sufficient to inflate the running costs beyond what is desirable for both

agents. Politician A prefers the alternative of starting a small project, but trying to capture

its entire benefit by setting ∆ = 1. Each transition of control then triggers a revision of an

unfavorable project, leading to long completion timelines.

5.4 Welfare

Our results so far show that organizational capacity has pronounced effects on the strategies

of project designers. Higher values of capacity increase inequality, while low and medium

values result in under- and over-scaling. These strategies suggest significant implications

for social benefits. In particular, when capacity lies in the interval [q, q], projects are both

over-scaled and highly unequal, and are therefore especially harmful to the non-initiating

agent.

We investigate aggregate benefits for the special case of quadratic costs (c(s) = s2). This

calculation first requires an expression for ex ante expected payoffs. Using the results from
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Proposition 2, agent A’s expected payoff prior to the revelation of the initiator evaluates to:

EUA(s∗,∆∗) =



pv2[2p2r−pq(5r+3)+2q2(3r+1)]
8(p−2q)2

if p < 4
3
q and r > 1/2

pv2[q(4−5r)−2p(1−r)]
8(p−2q)

if p < 4
3
q and r < 1/2

v2[p2r−4q2(1−r)]
4p

if p ∈
[

4
3
q, q
)

and r > 1/2

v2[4qr(p−q)−p2(1−r)]
4p

if p ∈
[

4
3
q, q
)

and r < 1/2

pv2(2r−1)
4

if p ≥ q.

(13)

Our measure of welfare simply sums the expressions in (13) for each range of p and each

agent, where agent B’s expected payoff equals agent A’s payoff under the complementary

probability of holding power. The sum is weighted by the probability of being the initiator.

Without loss of generality, for r > 1/2 this produces:


pv2[2p2r(2r−1)−pq(14r2−7r+1)+2q2(8r2−5r+1)]

8(p−2q)2
if p < 4

3
q

v2[p2r(2r−1)+4pq(1−r)2−4q2(1−r)]
4p

if p ∈
[

4
3
q, q
)

pv2(2r−1)2

4
if p ≥ q.

(14)

Figure 5 illustrates welfare as a function of p and q. It shows that the over-scaling regime

is especially bad for aggregate payoffs. As the values of q corresponding to this regime

increases with capacity, the implication is that systems with high institutional barriers and

high capacity are prone to producing poor projects. By contrast, systems with low capacity

and high barriers, or high capacity and low barriers, produce projects that are socially

beneficial, despite possible distributional or scale deficiencies.
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Figure 5: Welfare

Note: Welfare as a function of p and q. Parameters are r = 0.52 and v = 1.

6 Multiple Phases

We now adapt the preceding results to a model with two phases. In the basic model, period

0 is distinguished by the ability of the project initiator to choose key program parameters.

Inherently complex projects such as those often funded by FTA Capital Improvement Grants

typically present multiple opportunities for politicians to revisit basic questions of scale

and distribution. For example, in 2011 the Obama administration proposed the $30 billion

Gateway Program to upgrade rail infrastructure between New York and New Jersey. Despite

favorable FTA reviews, the Trump administration effectively cancelled the program, only to

have it revived under the Biden administration.8

Complex projects often require advance research and planning, and therefore early phases

of such projects correspond naturally to investments that reduce subsequent construction

or implementation costs. These investments may also provide benefits in their own right,

8See Matt Hickman, “New York and New Jersey’s long-delayed Gateway Program faces a more favorable
outlook under Biden presidency.” The Architect’s Newspaper, November 10, 2020.
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independently of the final project outcome. It is therefore worth asking how the possibility

of resetting program parameters mid-stream affects investments, project scale, and revisions.

In particular, we examine conditions under which transitions of power may prevent projects

from starting at all.

Each phase of the two-phase model is structurally identical to the basic model. Agent A

holds office at the start of phase 1, and holds office at the start of phase 2 with probability

r. Denote the parameters for scale, distribution, and valuation in phase τ by sτ , ∆τ , and vτ ,

respectively. As in the basic model, sτ and ∆τ are chosen in the initial incumbent in each

phase, vτ is exogenous, and project types are determined by players after the initial period

of the phase. The phase 1 payoffs thus represent the immediate value of investments such as

research contracts or pilot studies. To keep the analysis tractable, when there are multiple

equilibria we select the one in which only the favored agent revises.

The phases are dynamically linked through their cost functions. Let the cost of each

period in phase τ be c(sτ ) = mτs
2
τ , where mτ > 0 and m1 = 1. In phase 2, m2 = 1/s1, so

that early investments in the project reduce future marginal costs. Note that in isolation,

phase 1 of the model is identical to the basic game if s2 = 0, and phase 2 of the model is

identical to the basic game if s1 = 1.

Within each phase τ , actions following the choice of sτ only affect payoffs through the

division of vτ . Thus, the agents’ incentives following the initial period are similar to those of

the one-phase game, and we can exploit the derivations of Section 5 to analyze revisions and

the choice of ∆τ . The second phase primarily affects agent A’s incentives in choosing the

phase 1 scale, which affects phase 2 costs. Due to the simple structure of m2 and quadratic

costs, s1 linearly scales A’s phase 2 expected payoff. Her phase 1 objective can be expressed

as:

EUA(s1,∆1) + s1Ũ
A
2 , (15)
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where ŨA
2 = EUA(s∗,∆∗) is agent A’s phase 2 expected payoff prior to the revelation of the

phase 2 initiator. The expression for ŨA
2 is identical to that for ŨA (expression (13)), with

the exception of substituting v2 for v.

Maximizing (15) with respect to s1 produces our next result. Roughly speaking, the phase

1 investment is the scale of the one-phase game, s∗, adjusted to reflect ŨA. Importantly,

ŨA is negative whenever r < 1/2, as well as for some values of p between q and q (where

q = 2q under quadratic costs) when r > 1/2. When this happens, the phase 1 scale s∗1 is

lower than s∗. Consistent with Lemma 1, s∗1 may even be low enough to induce revisions

in equilibrium. Negative values of ŨA play a role similar to that of increasing the cost of

high project scales in the one-phase model: inhibiting large scales generates projects that

are insufficient to deter revisions.

Beyond merely reducing scale, the optimal scale in the initial phase may be zero, which

in effect cancels the project. Proposition 5 provides conditions under which this occurs.

Proposition 5 (Two Phases) If r > 1/2, then s∗1 = 0 only if p ∈ [q, q] and if:

ŨA < − rv [p(1− r) + qr]

p(1− r)r + q (2r2 − 2r + 1)
. (16)

If r < 1/2, s∗1 = 0 if v1 is sufficiently low or v2 is sufficiently high.

For a favored (r > 1/2) phase 1 initiator, cancellations occur because of the potential

for over-scaling. As Figure 3 illustrates, under moderate capacity an unfavored agent B

over-scales to prevent revisions. This can produce a highly undesirable expected payoff for

agent A, especially if she is not overwhelmingly likely to retain power. A highly competitive

political environment thereby encourages cancellations by forcing agent A to internalize the

social benefits of the project.9 By contrast, under low capacity, under-scaled projects are

9Note however that public projects may provide public good benefits to actors besides agents A and B.
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relatively efficient and do not invite cancellation. And under high capacity, a favored initiator

is likely to benefit from an unequal phase 2 project.

For an unfavored (r < 1/2) phase 1 initiator, the main driver of cancellation is the

distribution of payoffs over time. Phase 1 produces positive expected payoffs for the initiator,

but phase 2 produces negative ex ante expected payoffs at any capacity level. Thus she will

simply cancel if v2 is high relative to v1.

Figure 6 illustrates the role of cancellations by comparing phase 1 investments against

two benchmarks in the r > 1/2 case. In the first benchmark, A remains in power with

certainty at the beginning of phase 2, but faces the possibility of revision in both phases. As

expected, the possibility of losing control over the final project depresses investment. The

second benchmark is simply the equilibrium scale sNT in the one-phase game. The initial

investment s∗1 may be under- or over-scaled relative to this benchmark, depending on agent

A’s expected phase 2 payoffs. In this example, power transitions are very likely (p = 0.52),

so the threat of over-scaling by B in phase 2 causes under-scaling and cancellations when

capacity is in the interval [q, q]. This non-monotonicity of project scale with respect to

capacity reflects the non-monotonicity of social benefits in the one-phase game, as illustrated

in Figure 5.

7 Conclusion

Within academic and policy circles, bureaucratic capacity has become a hallmark of good

governance. But in contrast to the consensus about its benefits, there is little agreement

on its practical definition, and also little work that explores its implications for key features

of public policies. Our theory addresses both of these issues. It models capacity as the

transition probability of a simple Markov process, and then situates this process in an in-

29



Figure 6: Investment with Two Phases
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Note: Initial investment (s1, blue), benchmark investment (dashed) in a setting with where A chooses s2

and ∆2 in phase 2, and investment in the one-phase game (s∗ = sNT , green), as a function of p.

Parameters are r = 0.52, v1 = 1, v2 = 5, and q = 0.4. Vertical lines are located at the thresholds q and q,

between which over-scaling may occur.

stitutional environment that features political contestation and institutional rigidities. This

basic framework allows us to capture a rich set of outputs, such as the scale, timing, and

distributive properties of large public projects.

The principal equilibrium incentive in the model is the avoidance of revisions, which can

delay completion and reduce payoffs. Depending on capacity levels, this produces political

incentives to manipulate the scale and distributive properties of projects. Several unexpected

and potentially testable implications follow from this incentive. First, by reducing the oppor-

tunities for obstruction, high capacity agencies encourage larger and less egalitarian projects.

Second, when project scales are constrained, the inability to over-scale projects causes greater

revision and delay as capacity increases. Third, “moderate” capacity levels that encourage

over-scaling produce poor projects from a social welfare perspective. Finally, in complex

multi-phase projects, potential transitions of power can result in project cancellations. In

short, greater capacity does not unambiguously improve government performance.

Our model treats organizational capacity as exogenous, but its implications for policy
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performance raise some basic questions about its origins. We mention two as possibilities for

further inquiry. First, just as recent work on state capacity has explored the political and

economic drivers of investment in taxing powers, it is worth examining politicians’ incentives

to invest in the capabilities of agencies that may far outlive them. Second, it may be useful

to unpack the capacity parameter p to reflect the needs of modern projects. For example,

outside contractors often play major roles in major infrastructure construction, but whether

such players enhance capacity, or are symptoms of low capacity, is unclear.10

10See Ralph Vartabedian, “How California’s faltering high-speed rail project was ‘captured’ by costly
consultants.” Los Angeles Times, April 26, 2019.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Given the Markov transition probabilities, the value function for Politician A starting in
the state where control is held by Politician i ∈ {A,B} and the project type is ∆j with
j ∈ {A,B} is

UA(i,∆j|σA, σB) = sv · [H ij
1 (p, q, r) · w +H ij

2 (p, q, r) · (1− w)]− c(s)

p
·H ij

3 (p, q, r)·, (17)

while the corresponding utility for Politician B is

UB(i,∆j|σA, σB) = sv · [H ij
1 (p, q, r) · (1− w) +H ij

2 (p, q, r) · w]− c(s)

p
·H ij

3 (p, q, r)·, (18)

where H ij
1 (p, q, r) =

Γij(p,q,r)

Ω
, H ij

2 (p, q, r) =
Υij(p,q,r)

Ω
, and H ij

3 (p, q, r) =
Σij(p,q,r)

Ω
, and

Ω = p(1− rσA)(1− (1− r)σB) + q(rσA + (1− r)σB)− 2qr(1− r)σAσB (19)

ΣAA = p(1− p(1− r)σB)(1− rσA)− 2qpσAσBr(1− r) + q(rσA + (1− r)σB) (20)

ΣAB = p(1 + p(1− r)σA)(1− (1− r)σB) + 2qpσAσB(1− r)2 (21)

+ q(rσA + (1− r)σB) (22)

ΣBA = p(1 + prσB)(1− rσA) + 2qpσAσBr2 + q(rσA + (1− r)σB) (23)

ΣBB = p(1− prσA)(1− (1− r)σB)− 2qpσAσBr(1− r) + q(rσA + (1− r)σB) (24)

ΓAA(p, q, r) = p(1− rσA)(1− (1− q)(1− r)σB) + qrσA(1− (1− r)σB) (25)

ΓAB(p, q, r) = p(1− (1− r)σB)q(1− r)σA + qrσA(1− (1− r)σB) (26)

ΓBA(p, q, r) = p(1− rσA)(1− qrσB − (1− r)σB) + qrσA(1− (1− r)σB) (27)

ΓBB(p, q, r) = p(1− (1− r)σB)qrσA + qrσA(1− (1− r)σB) (28)

ΥAA(p, q, r) = −pq(1− r)σB(1− rσA) + q(1− r)σB(1− rσA) (29)

ΥAB(p, q, r) = p(1− rσA − q(1− r)σA)(1− (1− r)σB) + q(1− r)σB(1− rσA) (30)

ΥBA(p, q, r) = −pqrσB(1− rσA) + q(1− r)σB(1− rσA) (31)

ΥBB(p, q, r) = p(1− (1− r)σB)(1− (1− q)rσA) + q(1− r)σB(1− rσA) (32)

Given σA, σB ∈ {0, 1}, we can have a pure strategy equilibrium if each agent i ∈ {A,B}
prefers to follow her prescribed strategy given the other agent j’s strategy. For agent i, if
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σi = 1, then the payoff from revision is

U i,R = rqU i(i,∆i) + r(1− q)U i(i,∆j)

+ q(1− r)U i(j,∆i) + (1− r)(1− q)U i(j,∆j).

If σi = 0, then the payoff from project continuation of a project ∆j is

U i,C = psv(1− w) + (1− p)(1− r)U i(j,∆j) + (1− p)rU i(i,∆j)

Case 1: σA = 1 and σB = 1. This is an equilibrium if U i,R ≥ U i,C for i ∈ {A,B}. These
conditions reduce to two upper bounds on s, such that this equilibrium is sustainable if

c(s)

s
∈
[
0, qv(2w − 1) ·min

{
p(1− r)

p(1− r) + 2qr
;

pr

pr + 2q(1− r)

}]
.

Case 2: σA = 1 and σB = 0. This is an equilibrium if

UA,R(A,∆B) ≥ UA,C(A,∆B),

UB,R(B,∆A) < UB,C(B,∆A).

Each of the above conditions reduces to a threshold on s:

c(s)

s
≤ qv(2w − 1),

c(s)

s
≥ qv(2w − 1)

p(1− r)
p(1− r) + 2qr

.

Therefore, the equilibrium exists for

c(s)

s
∈
[
qv(2w − 1)

p(1− r)
p(1− r) + 2qr

, qv(2w − 1)

]
.

Case 3: σA = 0 and σB = 1. This is an equilibrium if

UA,R(A,∆B) < UA,C(A,∆B),

UB,R(B,∆A) ≥ UB,C(B,∆A).

Each of the above conditions reduces to a threshold on s:

c(s)

s
≥ qv(2w − 1)

pr

pr + 2q(1− r)
,

c(s)

s
≤ qv(2w − 1).
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Therefore, the equilibrium exists for

c(s)

s
∈
[
qv(2w − 1)

pr

pr + 2q(1− r), qv(2w − 1)

]
.

Case 4: σA = 0 and σB = 0. This is an equilibrium if

UA,R(A,∆B) < UA,C(A,∆B),

UB,R(B,∆A) < UB,C(B,∆A).

Each of the above conditions reduces to a threshold on c(s)
s

of c(s)
s
≥ qv(2w− 1) for both

politicians. Therefore, the equilibrium exists for c(s)
s
≥ qv(2w − 1).

Case 5. Mixed Strategy Equilibria. For mixed strategy equilibria, consider the case
where Politician A mixes with σA ∈ (0, 1), while B′s strategy is σB ∈ [0, 1]. This requires
UA(A,∆B|1, σB) = UA(A,∆B|0, σB), and thus

σB =
p(s− qv(2w − 1))

(1− r)
[
p(s− qv(2w − 1))− 2q c(s)

s

] . (33)

Similarly, Politician B mixes while A′s strategy is σA if UB(B,∆B|σA, 1) = UB(B,∆B|σB, 0),
and thus

σA =
p( c(s)

s
− qv(2w − 1))

r

[
p( c(s)

s
− qv(2w − 1))− 2q c(s)

s

] . (34)

The condition for mixing is that σB ∈ [0, 1] and σA ∈ [0, 1]. Given (33) and (34), this implies

c(s)

s
∈
[
pqv(2w − 1) max

{
1− r

p(1− r) + 2qr
,

r

pr + 2q(1− r)

}
, qv(2w − 1)

]
. (35)

Notice that the above condition allows for an equilibrium with σA = 1, σB ∈ (0, 1)

if c(s)
s

= 1−r
p(1−r)+2qr

and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
= 1−r

p(1−r)+2qr
. Conversely, an equilib-

rium with σB = 1, σA ∈ (0, 1) exists if c(s)
s

= r
pr+2q(1−r) and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
=

r
pr+2q(1−r) .

A.2 Proof of Propositions 1 and 2

We begin by establishing the following auxiliary results.
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Auxiliary Lemma 1 Politician A′s expected utility at time 0 is piecewise linear in w for
w ∈ [0, 1].

Proof. Given (17) and (18), with pure strategy equilibria, σA, σB ∈ {0, 1},

∂2UA(i,∆j|σA, σB)

∂w2
=
∂2UB(i,∆j|σA, σB)

∂w2
= 0.

For mixed strategy equilibria, we have

∂UA(A,∆A|σA, σB)

∂w
= −(1− 2p)sv,

∂UA(B,∆A|σA, σB)

∂w
= −1− (1− 2p)r

1− r
sv.

Thus, also with mixed strategy equilibria,

∂2UA(i,∆j|σA, σB)

∂w2
=
∂2UB(i,∆j|σA, σB)

∂w2
= 0.

Since EUA(s, w) = r · UA(A,∆A) + (1− r) · UA(B,∆A), it follows that EUA(s, w) is linear
in w given σA, σB.

Auxiliary Lemma 2 Politician A′s expected utility is increasing in w whenever σB = 0.

Proof. In period 0, the expected utility is

EUA(s, w|σA, σB) = sv ·
[(
r

ΓAA(p, q, r)

Ω
+ (1− r)ΓBA(p, q, r)

Ω

)
w

+

(
r

ΥAA(p, q, r)

Ω
+ (1− r)ΥBA(p, q, r)

Ω

)
(1− w)

]
− c(s)

p
·
(

ΣAA(p, q, r)

Ω
+

ΣBA(p, q, r)

Ω

)
,

which expands to

EUA(s, w|σA, σB) = s · vp
Ω
· (1− rσA) · (1− (1− r)σB) · w

+ s · vq
Ω
· [rσAw + (1− r)σB(1− w)− r(1− r)σAσB]

− c(s)

pΩ

[
q(rσA + (1− r)σB) + p(1− rσA)

]
. (36)

It follows that if σA = σB = 0, or if σA = 1, σB = 0 then

EUA(s, w) = svw − c(s)

p
, (37)

38



and thus
∂EUA(s, w)

∂w
= sv > 0.

Auxiliary Lemma 3 Politician A′s expected utility is monotone, either increasing or de-
creasing in w, whenever σB = 1.

Proof. If σA = 0, σB = 1, then

EUA(s, w|(0, 1)) = sv
q(1− r)(1− w) + prw

q(1− r) + pr
− c(s)

p

q(1− r) + p

q(1− r) + pr
,

and thus
∂EUA(s, w)

∂w
= sv

pr − q(1− r)
pr + q(1− r)

, (38)

which means
∂EUA(s, w)

∂w

{
> 0 if p > q 1−r

r

< 0 if p < q 1−r
r

.

If σA = 1, σB = 1, then

EUA(s, w|(1, 1)) = sv
q(1− r)2 + (q(2r − 1) + p(1− r)r)w

q(1− 2r(1− r)) + pr(1− r)
−c(s)

p

p(1− r) + q

q(1− 2r(1− r)) + pr(1− r)
,

and thus
∂EUA(s, w)

∂w
= sv

q(2r − 1) + pr(1− r)
q(1− 2r(1− r)) + pr(1− r)

, (39)

which means
∂EUA(s, w)

∂w

{
> 0 if p > q 2r−1

r(1−r)

< 0 if p < q 2r−1
r(1−r)

.

Auxiliary Lemma 4 Politician A′s expected utility is monotone decreasing in w if the
equilibrium is mixing.

Proof. Given the equilibrium mixing probabilities σA, σB, we have

EUA(s, w|(σA, σB)) = sv(1− w)− c(s)
(

1

p
− 1

q

)
.

Hence,
∂EUA(s, w|(σA, σB))

∂w
= −sv < 0.
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The values of w(s) which separate the different equilibrium regions are w ∈ {0, w1, w2, w3, 1},
where

w1(s) =
1

2
+
c(s)

s

1

2qv
,

w2(s) =
1

2
+
c(s)

s

1

2qv
+
c(s)

s

1

pv
min

{
1− r
r

,
r

1− r

}
,

w3(s) =
1

2
+
c(s)

s

1

2qv
+
c(s)

s

1

pv
max

{
1− r
r

,
r

1− r

}
.

Auxiliary Lemma 5 Given any s, politician A′s expected utility is continuous in w with
the exception of a finite number of discontinuities:

• A jump down at w3 if r > 0.5;

• A jump up at w2 if the equilibrium selected when w ∈ (w1, w2) is mixing or (i) r > 0.5
and σA = 0, σB = 1 or (ii) r < 0.5 and σA = 1, σB = 0.

• A jump down at w1 if the equilibrium selected is σA = 0, σB = 1 when w ∈ (w1, w2);

Proof.

Case 1: r > 1
2
. In this case, w2 = 1

2
+ c(s)

2qvs
+ c(s)

pvs
1−r
r

, w3 = 1
2

+ c(s)
2qvs

+ c(s)
pvs

r
1−r , and the

equilibrium for w ∈ (w2, w3) is σA = 1, σB = 0. Therefore, the equilibrium changes at w3

from σB = 0 to σB = 1. We have

lim
w↑w3

EUA(s, w|(0, 0)) =
sv

2
+ c(s)

[
1

2q
+

2r − 1

p(1− r)

]
,

and

lim
w↓w3

EUA(s, w|(1, 1)) =
sv

2
+
c(s)

2

1

q

pr − q(1− r) + q 3r2

1−r

pr + q(1− r) + q r2

1−r

+
c(s)

p

q r
2−2r(1−r)

(1−r)2 − q − p
pr + q(1− r) + q r2

1−r

.

Then,

lim
w↑w3

EUA(s, w)− lim
w↓w3

EUA(s, w) =
c(s)

p

2(1− r)(p(1− r) + 2qr)

q(1− 2r(1− r)) + pr(1− r)
> 0.

If in the region of multiplicity the equilibrium selected is σA = 1, σB = 0, then the
expected utility is continuous and has the same expression as a function of w for all w ≤ w3.
If in the region of multiplicity the equilibrium selected is σA = 0, σB = 1, then the equilibrium
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σB changes at both w1 and w2. At w2 we have

lim
w↑w2

EUA(s, w|(0, 1)) =
sv

2
+
c(s)

2q
− c(s)

pr
,

lim
w↓w2

EUA(s, w|(1, 0)) =
sv

2
+
c(s)

2q
+
c(s)

p

1− 2r

r
.

Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) = −2
c(s)

p

1− r
r

< 0. (40)

Hence, there is a jump up at w2.
At w1, we have

lim
w↑w1

EUA(s, w|(0, 0)) =
sv

2
+
c(s)

2q
− c(s)

p
,

lim
w↓w1

EUA(s, w|(0, 1)) =
sv

2
− (1− r)c(s)

2
+ c(s)

pr

2q
− c(s)

p

q(1− r) + p

q(1− r) + pr
.

Then,

lim
w↑w1

EUA(s, w)− lim
w↓w1

EUA(s, w) =
c(s)(1− pr + q(1− r))

2q
+
c(s)

p

p(1− r)
q(1− r) + pr

> 0. (41)

Hence, there is a jump down at w1.
If in the region of multiplicity the mixing equilibrium is selected, then at w1, σA = 1, σB =

0, and therefore EUA(s, w1|(0, 0)) = EUA(s, w1|(σA, σB)). Hence, there is no discontinuity
at w1. At w2, σA = 0, σB = 1, and therefore EUA(s, w1|(0, 1)) = EUA(s, w1|(σA, σB)).
Hence, there is the same discontinuity at w2 as in (40).

Case 2: r < 1
2
. In this case, w2 = 1

2
+ c(s)

2qvs
+ c(s)

pvs
r

1−r , w3 = 1
2

+ c(s)
2qvs

+ c(s)
pvs

1−r
r
.

As shown above, EUA(s, w|0, 0) = EUA(s, w|1, 0), which implies that there is no disconti-
nuity at w1 if the equilibrium selected in the multiplicity region is σA = 1, σB = 0. If the equi-
librium selected in the region of multiplicity is σA = 0, σB = 1, then at w1 we have the same
discontinuity as in (41). If the mixing equilibrium is selected in the region of multiplicity,
then at w1 we have σA = 1, σB = 0, and therefore EUA(s, w1|(0, 0)) = EUA(s, w1|(σA, σB)).
Hence, there is no discontinuity at w1.

At w2, if the equilibrium selected in the multiplicity region is σA = 0, σB = 1, then there
is no discontinuity, as the equilibrium in (w2, w3) is also σA = 0, σB = 1. If the equilibrium
selected in the multiplicity region is σA = 1, σB = 0, then

lim
w↑w2

EUA(s, w|(1, 0)) =
sv

2
+
c(s)

2q
+
c(s)

p

2r − 1

1− r
,
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lim
w↓w2

EUA(s, w|(0, 1)) =
sv

2
+
c(s)

2q
− c(s)

p(1− r)
− c(s) 2(1− 2r)

pr + q(1− r)
.

Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) = c(s)
2

p

p(1− r) + qr

pr + q(1− r)
> 0.

Hence, there is a jump down at w2.
If the mixing equilibrium is selected in the multiplicity region, then at w2, σA = 1, σB =

r
1−r .

lim
w↑w2

EUA(s, w|(σA, σB)) =
sv

2
+
c(s)

2q
− c(s)

2p(1− r)
Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) =
c(s)

2p(1− r)
+ c(s)

2(1− 2r)

pr + q(1− r)
> 0.

Hence, there is also a jump down at w2 under mixing.
Finally, at w3,

lim
w↑w3

EUA(s, w) =
sv

2
+
c(s)

2q
− c(s)

pr
= lim

w↓w3

EUA(s, w)

Thus, there is no jump at w3 if r < 0.5

Auxiliary Lemma 6 It is never the case that ∂EUA(s,w|(0,1))
∂w

> 0 > ∂EUA(s,w|(1,1))
∂w

.

Proof.
From (38) and (39), given that 1−r

r
> 1−2r

r(1−r) , we have
0 < ∂EUA(s,w|(0,1))

∂w
, 0 < ∂EUA(s,w|(1,1))

∂w
if p > q 1−r

r
∂EUA(s,w|(0,1))

∂w
< 0 < ∂EUA(s,w|(1,1))

∂w
if q 1−2r

r(1−r) < p < q 1−r
r

∂EUA(s,w|(0,1))
∂w

< 0, ∂EU
A(s,w|(1,1))
∂w

< 0 if p < q 1−2r
r(1−r)

. (42)

Consider the problem for Politician A of choosing w for a given s. Denote this value
w∗(s).

Auxiliary Lemma 7 If r > 0.5, then either w∗(s) = w3(s) < 1 or w∗(s) = 1.

Proof. By Auxiliary Lemmas 1, 2 and 4, the solution w∗(s) ∈ {w1(s), w2(s), w3(s), 1}.
If r > 0.5, then w∗(s) /∈ (w1, w2) if w2(s) ≤ 1, given that the function is monotone in
between these bounds, by Lemmas 2-4. By Auxiliary Lemma 5, there is either a jump down
or continuity at w1, followed by a jump up or continuity at w2. Hence, the equilibrium
selection in the multiplicity region is irrelevant for the value of w∗(s). Auxiliary Lemma
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2 shows that EUA(s, w) is increasing for w ≤ w1(s) and for w ∈ [w2(s), w3(s)]. Lemma 6

implies that ∂EUA(s,w|(1,1))
∂w

> 0, since q 1−2r
r(1−r) < 0. Therefore, the expected utility is increasing

for all w /∈ (w1, w2). By Lemma 5, the only discontinuity for w /∈ [w1, w2] is at w3(s), where
the function jumps down. Therefore, the maximum satisfies w∗(s) ∈ {w3(s), 1}.

Auxiliary Lemma 8 For r < 0.5,

• if in the multiplicity region the equilibrium selected is σA = 0, σB = 1 or the mixing
equilibrium, then w∗(s) = w1(s) < 1 or w∗(s) = 1;

• otherwise, w∗(s) = w2(s) < 1 or w∗(s) = 1.

Proof. By Auxiliary Lemmas 1, 2 and 4, the solution w∗(s) ∈ {w1(s), w2(s), w3(s), 1}. But
Auxiliary Lemma 6 implies that the solution cannot be w3(s). If the selected equilibrium is
σA = 0, σB = 1 in the multiplicity region, then the expected utility function has the same
expression for w ∈ [w1(s), w3(s)] and is monotone in this interval, hence the solution cannot
be at w2(s) ∈ [w1(s), w3(s)]. By Lemma 5, there is jump down at w1(s) and the expected
utility is otherwise continuous. Therefore, w∗(s) ∈ {w1(s), 1}.

If in the multiplicity region the equilibrium selected is the mixing equilibrium, then by
Lemma 5, the only discontinuity is at w2(s), where the expected utility jumps down. By
Lemma 4, the expected utility is decreasing in the mixing region. Hence, w2(s) cannot be
the solution. Therefore, w∗(s) ∈ {w1(s), 1}.

If in the multiplicity region the equilibrium selected is σA = 1, σB = 0, then Lemma 2,
the expected utility is increasing for all w ≤ w2(s). By Lemma 5, the only discontinuity is
at w2(s), where the expected utility jumps down. Hence, w∗(s) ∈ {w2(s), 1}.

Optimal s

Given w∗(s), we can now move to the selection of s. Notice that given w = 1, the expression
for EUA(s|w = 1) implied by (17) is strictly concave in s for any σA, σB ∈ {0, 1}. Moreover, it
is either concave or convex and increasing in s for the σA, σB given in the mixing equilibrium.

Part 1: Solution when r > 0.5. Consider first the case when the equilibrium selected
in the multiplicity region is (σA, σB) = (1, 0), such that in the revision equilibrium we
have σB = 0. Then by Auxiliary Lemma 7, w∗(s) ∈ {w3(s), 1}. We have w3 ≤ 1 iff
c(s)
s
< vq p(1−r)

p(1−r)+2qr
. Additionally, if w3 ≤ 1, then the equilibrium at w = 1 has σB = 1; else,

it has σB = 0. Therefore, if c(s)
s
≥ vq p(1−r)

p(1−r)+2qr
, we have σB = 0, and the maximization

problem over s becomes

max sv − c(s)

p
. (43)

This leads to
c′(s∗) = max{vp, c′(s)}, (44)
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where
c(s)

s
= vq

p(1− r)
p(1− r) + 2qr

. (45)

If s ≤ s, then w3 ≤ 1, and

EUA(s|w3, (1, 0)) =
vs

2
+ c(s)

(
2r − 1

p(1− r)
+

1

2q

)
, (46)

which is strictly convex and increasing in s. Then, the optimal s is s. Thus,

EUA(s) = s · v ·
(

1− q(1− r)
p(1− r) + 2qr

)
(47)

At w = 1, with w3 < 1 such that σB = 1, we have EUA(s|w = 1, (1, 1)) > EUA(s|w =
w3, (1, 0)) if

c(s)

s
≤ q(2r − 1) + p(1− r)r)

(p(1− r) + q)2q(1− r) + (2(2r − 1)q + p(1− r))(q(1− r)2 + qr2 + pr(1− r))
.

Notice that

EUA(s|w = 1, (1, 1)) ≤ sv
q(1− r)2 + (q(2r − 1) + p(1− r)r)

q(1− 2r(1− r)) + pr(1− r)

≤ sv
p(1− r) + 2qr − q(1− r)

p(1− r) + 2qr
= EUA(s|w = 1, (1, 0)).

Therefore, the maximum utility value reached in the region of s values where w3 < 1 is below
the utility reached when s = s. Hence, the Politician A′s optimal choices are w∗ = 1, and
s∗ given in (44):

c′(s∗) =

{
vp if p ≥ q(ε, q, r|r > 0.5)

c′(s) if p < q(ε, q, r|r > 0.5)
, (48)

where

q(ε, q, r|r > 0.5) = q ·
(
ε(s)− 2r

1− r

)
. (49)

The equilibrium revision strategies are (0, 0) if w1 ≥ 1, that is, if s∗ > s and qv ≤ c(s∗)/s∗.
The revision equilibrium is (σA, σB) = (1, 0) otherwise.

Next, consider the case when the equilibrium selected in the multiplicity region is not
(σA, σB) = (1, 0). The analysis is as above if w3(s) ≤ 1. If w1(s) ≤ 1 < w2(s), i.e.,

if vq pr
pr+2q(1−r) <

c(s)
s
≤ vq, then the revision equilibrium at w = 1 does not have σB =

0. In this case, given Auxiliary Lemma 5, the solution w∗(s) is w1(s). Yet, note that
EUA(s|w = 1, (0, 1)) ≥ EUA(s|w = w1, σ

B 6= 0). Thus, the solution s∗ may be in the
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interval vq pr
pr+2q(1−r) < c(s)

s
≤ vq only if at the value sp for which c′(sp) = vp we have

c(sp)
sp
∈ (vq pr

pr+2q(1−r) , vq). Then s is chosen to maximize

max
qv pr

pr+2q(1−r)
<

c(s)
s
<qv

sv

2
+
c(s)

2q
− c(s)

p
. (50)

If p > 2q, then the expected utility is increasing in s and the solution is s = s̃ > s such that
c(s̃)
s̃

= vq, given sc′(s) ≥ c(s).
If p < 2q, then the optimal s, denote it si, is such that

c′(si) = vp
q

2q − p
, (51)

and
c′(sw2) ≤ c′(si) ≤ c′(sw1), (52)

where

c(sw2)

sw2
= vq

pr

pr + 2q(1− r)
,

c(sw1)

sw1
= vq.

Finally, the solution s∗ is as given by si derived in (51) if the global maximum is in this
interval, i.e., if

EUA(si|w = w1, σ
B 6= 0) ≥ EUA

(
s|c(s)

s
= vq

pr

pr + 2q(1− r)
, w = 1, (0, 1)

)
, (53)

EUA(si|w = w1, σ
B 6= 0) ≥ EUA

(
s|c(s)

s
= vq, w = 1, (0, 1)

)
. (54)

To sum up, if in the mixing region an equilibrium with σB 6= 0 is chosen, then the solution
differs from the case when the equilibrium selection is σB = 0 only if p < 2q and conditions
(52), (53) and (54) are satisfied; in this case, w∗ = w1(s∗) and s∗ = si given implicitly in
(51).

Part 2: Solution when r < 0.5 In this case, by Auxiliary Lemma 8, w∗(s) ∈ {w1(s), w2(s), 1}.
Consider first the case where the equilibrium selected in the multiplicity region is not
(σA, σB) = (1, 0), such that w∗(s) ∈ {w1(s), 1}.

Part 2A. When p < q 1−2r
r(1−r) : only solution is w1(s)

By Auxiliary Lemma 6, w1(s) is the only solution if p < q 1−2r
r(1−r) .
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Part 2A(i): s ≥ s1 where c(s1)
s1

= qv. In this case, w1(s) ≥ 1 and the expected utility
at w1 is

EUA(s|w1, (0, 0)) = vs− c(s)

p
. (55)

The solution is

c′(s) = max

{
vp, c′(s1)

}
.

Part 2A(ii): s < s1. Here, w1(s) = 1
2

+ c(s)
s

1
2qv

is interior, and the expected utility at
w1 is

EUA(s|w1, (0, 0)) =
vs

2
− c(s)

(
1

p
− 1

2q

)
. (56)

The solution in this case is

c′(s) =


c′(s1) if p ≥ 2q

min

{
vqp

2q−p , c
′(s1)

}
if p ∈ [q, 2q]

vqp
2q−p if p ≤ q

(57)

Therefore, the solution when p < q 1−2r
r(1−r) is

c′(s∗) =


vqp

2q−p if p ≤ q(ε, q, r|r < 0.5),

c′(s1) if q(ε, q, r|r < 0.5) < p < q(ε, q, r|r < 0.5),

vpif p ≥ q(ε, q, r|r < 0.5),

(58)

where

q(ε, q, r|r < 0.5) = q · c
′(s1)s1

c(s1)
, (59)

q(ε, q, r|r < 0.5) = 2q · 1

1 + c(s1)
c′(s1)s1

(60)

Part 2B. When q 1−2r
r(1−r) < p: solution is either w1 ≤ 1 or w = 1.

In this case, it is possible that there is a corner solution at w = 1.

Part 2B (i). s ≤ s3, where c(s3)
s3

= vq pr
pr+2q(1−r) .

The threshold w3 is interior if s ≤ s3. Then, the revision equilibrium at w = 1 is
(σA, σB) = (1, 1). This means that

EUA(s|w = 1, (1, 1)) = vs
r(p(1− r) + qr)

r(p(1− r) + qr) + q(1− r)2
− c(s)

p

p(1− r) + q

r(p(1− r) + qr) + q(1− r)2
,

(61)
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The corner w = 1 is optimal if EUA(s|w = 1, (1, 1)) − EUA(s|w1, (0, 0)) ≥ 0, which is
equivalent to

c(s)

s
≤ c(s11)

s11

≡ vqp · pr(1− r)− q(1− 2r)

(1− r)r(p− 2q)2 + pq(3− 2r)
, (62)

where it can be verified that s11 < s3. Else, if s > s11, then w1(s) is optimal.
This implies that in the region s[0, s11], the optimal s is

c′(s(1, 1)) = min

{
vp · r(p(1− r) + qr)

p(1− r) + q
, c′(s11)

}
,

whereas in the region s > s11, the solution is

c′(s∗) =


vqp

2q−p if max{ vqp
2q−p , vp} ≤ c′(s1) and p < 2q

c′(s1) if vp < c′(s1) < vqp
2q−p and q < p < 2q or vp < c′(s1) and p ≥ 2q

vp if c′(s1) ≤ vp.

(63)

We will next examine each of these four cases. In the first case, if if c′(s∗) = vqp
2q−p , then

note that
p(1− r) + q

r(p(1− r) + qr) + q(1− r)2
>

2q − p
2q

, (64)

which means that

∂2EUA(s|w = 1, (1, 1))

∂s2
<
∂2EUA(s|w = w1, (0, 0))

∂s2
, (65)

and therefore a sufficient condition for the global maximum to satisfy s∗ ≥ s11 is that

−∂EU
A(s11|w = 1, (1, 1))

∂s
<
∂EUA(s11|w = w1, (0, 0))

∂s
,

which reduces to

c′(s11) ≤ vpq
(3r(1− r)p+ q(1− 2r + 4r2))

pq(1− 2r) + 4q2 − (p− 2q)2r(1− r)
. (66)

Given (62), the above implies an upper bound on the elasticity of c(s) of

s · c′(s)
c(s)

≤ min
p∈(q 1−2r

r(1−r)
,2q),q∈[0,1],r∈[0,0.5]

{
r(1− r)(p− 2q)2 + pq(3− 2r)

p(1− r)r − q(1− 2r)

· (3r(1− r)p+ q(1− 2r + 4r2))

pq(1− 2r) + 4q2 − (p− 2q)2r(1− r)

}
.
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This bound is decreasing in r, which means that the problem can be reduced to

s · c′(s)
c(s)

≤ min
p∈(0,2q),q∈[0,1]

{
(p+ 2q)(3p+ 4q)

p(6q − p)

}
. (67)

Using numerical minimization methods, we can show that this bound for the elasticity is at
least 4.19. Therefore, a sufficient condition for the solution s∗ to satisfy s∗ ≥ s11 is

c′(s) · s
c(s)

≤ 4 ≤ min
p∈[0,2q],q∈[0,1]

{
(p+ 2q)(3p+ 4q)

p(6q − p)

}
. (68)

Next, consider the second case, where c′(s1) = vqp
2q−p and q < p. Notice that at q = p, we

have s∗00 = arg maxEUA(s|w1, (0, 0)) that satisfies c′(s∗00) = vq ≤ c′(s1). Thus, the maximum
value EUA(s|w1, (0, 0)) is achieved at s < s1 for q = p. Let s∗11 denote the argmax for
arg maxEUA(s|w = 1, (1, 1)) and let r = 1/2, in order to maximize EUA(s∗11|w = 1, (1, 1)).
The effect of decreasing q at s = s11 is

−∂
2EUA(s|w = 1, (1, 1))

∂s∂q
=

vp

(p+ 2q)2
, (69)

−∂
2EUA(s|w1, (0, 0))

∂s∂q
=
c′(s∗00)

2q2
, (70)

−∂
3EUA(s|w = 1, (1, 1))

∂s∂q
= 0, (71)

−∂
3EUA(s|w1, (0, 0))

∂s2∂q
=
c′′(s∗00)

2q2
. (72)

This implies

−
(
∂2EUA(s|w = w1, (0, 0))

∂s∂q
+
∂2EUA(s|w = 1, (1, 1))

∂s∂q

)
> 0, (73)

while the rate of decrease in the slope of EUA(s) decreases relatively more forEUA(s|w1, (0, 0))
compared to EUA(s|w = 1, (1, 1)). Then, (73) together with (71) and (72) along with con-
dition (68) imply that

max
s≤s1

EUA(s|w1, (0, 0)) > max
s≤s1

EUA(s|w = 1, (1, 1))for q ∈ [0, p]. (74)

In the third case, if c′(s) = vp, then notice that

EUA(s|w = 1, (0, 0))− EUA(s|w = 1, (1, 1)) > 0, (75)

48



and
∂EUA(s|w = 1, (0, 0))

∂s

∣∣∣∣
s=s1

> 0 =⇒ ∂EUA(s|w = w1, (0, 0))

∂s

∣∣∣∣
s=s1

≥ 0.

Then, the arg maxs≥s1 EU
A(s|w = 1, (0, 0)) is the global maximum.

In sum, under condition (68), the solution is
c′(s∗) = vqp

2q−p , w
∗ = w1 < 1 if p ≤ q,

c′(s∗) = c′(s1), w∗ = 1 if q < p < q,

c′(s∗) = vp, w∗ = 1 if p ≥ q,

, (76)

where q and q are given in (59).

Other equilibrium selections under multiplicity. Consider next the case where the
equilibrium selected in the multiplicity region is (σA, σB) = (1, 0). In this case, w∗ ∈
{w2(s), 1}. The analysis in Part 2A carries over under the change from w1 to w2 and
therefore the solution for s∗ and w∗ becomes

c′(s∗) = vqp(1−r)
2q(1−2r)−p(1−r) , w

∗ = w1 < 1 if p ≤ qalt,

c′(s∗) = c′(s2), w∗ = 1 if qalt < p < qalt,

c′(s∗) = vp, w∗ = 1 if p ≥ qalt,

, (77)

where

s2 = vq
p(1− r)

p(1− r) + 2qr
(78)

qalt = 2q
(1− 2r) s2c

′(s2)
c(s2)

− r

(1− r)
(

1 + s2c′(s2)
c(s2)

) (79)

qalt = q

(
s2c
′(s2)

c(s2)
− 2r

1− r

)
(80)

For Part 2B, notice that EUA(s|w2, (0, 0)) ≥ EUA(s|w1, (0, 0)), which means that con-
dition (68) is sufficient to ensure that the solution is not w = 1 and (σA, σB) = (1, 1). The

solution therefore is as in (76), replacing q and q by qalt and qalt, respectively, and c(s11)
s11

by
c(salt11 )

salt11
with

c(salt11 )

salt11

= vqp · (1− r)(pr(1− r)− q(1− 2r))

(2qr + (1− r)p)((p+ 4q)r(1− r) + q(3− 2r))
(81)

Finally, if the equilibrium in the multiplicity region is mixing, then the analysis the same
as in parts 2A and 2B above.
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Part 3: Over-scaling or under-scaling. The unconstrained scale in the benchmark
with no transitions in control: c′(sNT ) = vp. Hence, given the above derivations, for r ≥ 1

2
,

s∗

{
= sNT if p ≥ q̃

> sNT if p < q̃
.

Notice that the case s∗ > sNT requires ε(s) > 2.

If r < 1
2

and the equilibrium selected in the multiplicity region is not (σA, σB) = (1, 0),
then notice that vq q

2q−p < vp implies p < q. Thus,

s∗


= sNT if p ≥ q or p = q

> sNT if q < p < q

< sNT if p < q

.

If r < 1
2

and the equilibrium selected in the multiplicity region is (σA, σB) = (1, 0), then

s∗


= sNT if p ≥ qalt or p = q

> sNT if q < p < qalt

< sNT if p < q

.

A.3 Proof to Corollary 1

Follows from Proposition 2. For r ≥ 1/2, c′(s∗) = vp, which is increasing in p. For r < 1/2,
the result follows given the expressions for s∗ in (76) or (77).

A.4 Proof to Proposition 3

From the proof to Proposition 2, if r > 1/2, then for smax such that c′(smax) < 2qp(1 −
r)/(p(1− r) + 2qr), the optimal solution w(s) for any s ≤ smax is w(s) = 1 and the revision
equilibrium is (σA, σB) = (1, 1).

If r < 1/2 and smax < min s11, s
alt
11 , then s∗ = smax, w(s) = 1 and the revision equilibrium

is (σA, σB) = (1, 1).
Notice that s11, salt11 , and vp are all increasing in p. Thus, for every p∗ ∈ (0, 1), let

c′(sM(p∗)) =


2qp(1−r)

(p(1−r)+2qr)
if r ≥ 1

2

c′(s11(p∗)) if r < 1
2

and (1, 0) not selected under multiplicity

c′(salt11 (p∗)) if r < 1
2

and (1, 0) selected under multiplicity

(82)

Let smax = sM(p∗). Then, for all p < p∗, c′(sM(p∗)) > 2qp(1−r)
(p(1−r)+2qr)

, which implies that

the solution for r > 1
2

is s∗ = qv if c′(smax) < vp or c′(s∗) = vp otherwise. For r < 1
2
,
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sM(p∗) > s11(p) and sM(p∗) > salt11 (p), and so the solution s∗ is in the equilibrium with
σB = 0. This implies no revisions on the equilibrium path.

For all p ≥ p∗, as shown above, the only possible solution is w = 1, s∗ = smax and the
revision equilibrium (σA, σB) = (1, 1).

A.5 Proof to Corollary 2

Follows from the proof of Proposition 3.

A.6 Proof to Proposition 5

Observe first that because revisions in phase 1 cannot affect payoffs in phase 2, revision
strategies are identical to those in the one-phase game. As the result focuses on phase 1
strategies, we omit notation for phases.

Part 1: r > 1/2. Following the proof of Proposition 2, distribution and revision strategies
given s are as follows: 

σA = 1, σB = 1,∆ = 1 s ≤ ŝ1 (a)
σA = 1, σB = 0,∆ = w3 s ∈ (ŝ1, ŝ3] (b)
σA = 0, σB = 0,∆ = 1 s > ŝ3 (c)

where w3 = 1
2

+ s
2qv

+ sr
pv(1−r) and:

ŝ1 =
pq(1− r)v[p(1− r)r + q(2r − 1)]

(p(1− r) + 2qr) [p(1− r)r + q (4r2 − 6r + 3)]

ŝ3 =
pq(1− r)v

p(1− r) + 2qr
,

which satisfies 0 < ŝ1 < ŝ3.
Using ŨA

2 to denote A’s ex ante expected value of a single phase of play when m = 1
(13), the corresponding objective for agent A is:

V̂ A(s) =


V A
a (s) =

(
rv(p(1−r)+qr)

p(1−r)r+q(2r2−2r+1)
+ ŨA

2

)
s− (q+p(1−r))s2

p(p(1−r)r+q(2r2−2r+1))
s ≤ ŝ1 (a)

V A
b (s) = (v

2
+ ŨA

2 )s+
(

1
2q

+ 2r−1
p(1−r)

)
s2 s ∈ (ŝ1, ŝ3] (b)

V A
c (s) = (v + ŨA

2 )s− s2

p
s > ŝ3 (c)

We note several properties of V̂ A(s) and its components. It is straightforward to verify that
V̂ A(s) is continuous, concave in regions (a) and (c), and convex in region (b). Additionally,

V A
a (0) = V A

b (0) = V A
c (0) = 0. Finally, dV A

c (s)
ds

> dV A
a (s)
ds

. Together, these facts imply that

V̂ A(s) can be maximized only at 0, ŝ1, ŝ3, or sa or sc, the interior values of s that maximize
V A
a (s) or V A

c (s), respectively, if they exist.
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Taking first order conditions yields the following candidate interior solutions:

sa =
p

2

(
r(v + ŨA

2 ) +
q(1− r)[(1− 2r)ŨA

2 − rv]

p(1− r) + q

)
(83)

sc =
p

2
(v + ŨA

2 ). (84)

We make three observations that narrow the set of possible solutions. First, the region
(c) solution is interior (i.e., sc > ŝ3) if:

ŨA
2 > φc ≡ −

v(p(1− r) + 2q(2r − 1))

p(1− r) + 2qr
. (85)

Second, sa > 0 if:

ŨA
2 > φa ≡ −

vr(p(1− r) + qr)

p(1− r)r + q (2r2 − 2r + 1)
. (86)

Third, V̂ A(ŝ1) < V̂ A(ŝ3) if:

ŨA
2 > φb ≡ −

v (3p2(1−r)2r + pq(1−r)(2r(9r−7)− 5)− 2q2(6(3−2r)r2 − 11r) + 2))

2(p(1− r) + 2qr) (p(1− r)r + q(4r2 − 6r + 3))
. (87)

Under the assumed parameter values, φb < φa < φc.
We now derive the optimal s for each possible value of ŨA

2 . There are four cases.
(i) ŨA

2 > φc. Because V A
c (s) > V A

a (s) for s > 0, s∗ = sc.
(ii) ŨA

2 ∈ (φa, φc]. The possible solutions are sa and ŝ3. Solving V A(sa) = V A(ŝ3) for
ŨA

2 produces a unique value φac of ŨA
2 such that φac ∈ (φa, φc] and s∗ = sa if ŨA

2 < φac and
s∗ = ŝ3 otherwise. (We omit the expression for φac due to excessive length.)

(iii) ŨA
2 ∈ (φb, φa]. The possible solutions are 0 and ŝ3. Observe that V A

c (ŝ3) ≥ 0 only for

ŨA
2 > rv(p(1−r)+qr)

p(1−r)r+q(2r2−2r+1)
, but this value of ŨA

2 is greater than φa. Thus the optimal solution
must be s∗ = 0.

(iv) ŨA
2 ≤ φb. The possible solutions are 0 and ŝ1. ŝ1 cannot be the solution because

V A
a (s) is decreasing in s for s > 0 when ŨA

2 ≤ φa; thus the optimal solution must be s∗ = 0.
Combining cases produces:

s∗ =


sc if ŨA

2 > φc
ŝ3 if ŨA

2 ∈ (φac, φc]

sa if ŨA
2 ∈ (φa, φac]

0 if ŨA
2 ≤ φa.

(88)

Comparing ŨA
2 with φa, it is clear that the project will not be cancelled in phase 1 if

p < q or p > 2q = q.

Part 2: r < 1/2. Following the proof of Proposition 2, distribution and revision strategies
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given s are as follows: 
σA = 1, σB = 1,∆ = 1 s ≤ š1 (a)
σA = 0, σB = 0,∆ = w1 s ∈ (š1, š3] (b)
σA = 0, σB = 0,∆ = 1 s > š3 (c)

where w1 = 1
2

+ s
2qv

and:

š1 =
pqv [p(1− r)r − q(1− 2r)]

(p2 + 4q2)(1− r)r + pq(4r2 − 6r + 3)
š3 = qv,

which satisfies š1 < š2.
The corresponding objective for agent A is:

V̌ A(s) =


V A
a (s) =

(
rv(p(1−r)+qr)

p(1−r)r+q(2r2−2r+1)
+ ŨA

2

)
s− (p(1−r)+q)s2

p[p(1−r)r+q(2r2−2r+1)]
s ≤ š1 (a)

V̌ A
b (s) = (v

2
+ ŨA

2 )s+
(

1
2q
− 1

p

)
s2 s ∈ (š1, š3] (b)

V A
c (s) = (v + ŨA

2 )s− s2

p
s > š3 (c)

We note several properties of V̌ A(s) and its components. In regions (a) and (c), the compo-
nent functions are identical to those in Part 1 (and thus concave). V̌ A

b (s) is convex if p > 2q
and concave otherwise. It is straightforward to verify that V̌ A(s) is continuous. Additionally,
V A
a (0) = V̌ A

b (0) = V A
c (0) = 0. Together, these facts imply that V̌ A(s) can be maximized

only at 0, š1, š3, or sa, šb, or sc, which are the interior values of s that maximize V A
a (s),

V̌ A
b (s), or V A

c (s), respectively, if they exist. Finally, š3 is positive but š1 may be negative;
solutions in region (a) can exist only if š1 > 0.

Taking first order conditions yields the following candidate interior solution for region
(b), with the interior solutions sa and sc for regions (a) and (c) given by (83) and (84),
respectively:

šb =
pq(v + 2ŨA

2 )

4q − 2p
. (89)

For šb to be interior it must be both positive, which holds if ŨA
2 > −v/2, and in the interval

(š1, š3], which occurs if ŨA
2 ∈

(
φ̌lb, φ̌

h
b

]
, where:

φ̌lb =
v [4q2(r2 + r − 1)− 3p2(1− r)r − pq(8r2 − 6r + 1)]

2 [(4q2 + p2)(1− r)r + pq (4r2 − 6r + 3)]

φ̌hb = v

(
2q

p
− 3

2

)
.

We make three observations that narrow the set of possible solutions. First, the region
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(c) solution is interior (i.e., sc > š3) if:

ŨA
2 > φ̌c ≡ v

(
2q

p
− 1

)
. (90)

Second, the region (a) solution is interior (i.e., sa ∈ (0, š1)) if ŨA
2 > φa (i.e., condition

(86) from Part 1), and ŨA
2 < φ̌ha, where:

v
[
(1− r)r2

(
p3(1− r) + 4q3r

)
+ p2qr

(
1− r(5r2 − 9r + 5)

)
+

φ̌ha ≡
q2(1− 2r) (2p+ 2q − pr(4r2 − 5r + 4))]

((1− r)r(2q − p)− q) [(1− r)r (p2 + 4q2) + pq (4r2 − 6r + 3)]
.

The condition sa < sha is equivalent to š1 > 0.
Third, if either šb or sc are interior, then A prefers them to š3, which belongs to both

regions (b) and (c). Similarly, if either sa or šb are interior, then A prefers them to š1.
We now derive the optimal s for each possible value of ŨA

2 and q.
(i) ŨA

2 > φ̌c. When φ̌c is interior, the only possible alternative solutions are 0, š1, and

sa. By the concavity of V A
c (s), V A

c (sc) > V A
c (0), and dV A

c (s)
ds

> dV A
a (s)
ds

implies that V A
c (sc) >

V A
a (sa) when sa > 0. Finally, straightforward calculation shows that V A

c (sc) > V A
a (š1) when

š1 > 0. Thus, s∗ = sc.
For subcases (ii)-(v), p < 2q, so the objective V̌ A

b (s) in region (b) is concave. As ŨA
2 < 0

for agent A when r < 1/2, it it is impossible for condition (90) to be satisfied and thus
subcase (i) is irrelevant.

(ii) ŨA
2 ∈ (φ̌hb , φ̌c]. In this subcase, V̌ A

b (s) is maximized at some s > š3 and šb is not
feasible. If š1 ≤ 0, then the optimal s is the region (b) corner: s∗ = š3.

If š1 > 0, then V̌ A
b (š3) > V̌ A

b (š1). By the concavity of V̌ A
b (s), V̌ A

b (š3) > V̌ A
b (0), and so

the remaining candidate solutions are š3 and sa. Performing the necessary substitutions and
solving, V̌ A

a (sa) > V̌ A
b (š3) iff ŨA

2 < φ̌a3, where:

φ̌a3 ≡
v
[
2q2 − p2(1−r)r − pq(r2+2r−2)− 2q

√
2(1−r)(p(1−r)+qr)(p(1−r) + q)

]
p [p(1− r)r + q (2r2 − 2r + 1)]

. (91)

It is straightforward to verify that φ̌a3 < φ̌c. Thus we have s∗ = š3 if ŨA
2 ∈ (φ̌a3, φ̌c], and

s∗ = sa if ŨA
2 ∈ (φ̌hb , φ̌a3], where the latter interval may be empty.

(iii) ŨA
2 ∈ (max{−v/2, φ̌lb}, φ̌hb ]. In this subcase, šb is a feasible solution, which A ob-

viously prefers to š1 and š3. By the concavity of V A
b (s), V̌ A

b (šb) > V̌ A
b (0), and so the only

other possible candidate solution is sa, if region (a) is non-empty. Thus ŝ1 ≤ 0 implies that
the solution is šb. Furthermore, ŝ1 ≤ 0 also implies that −v/2 > φ̌lb.

If ŝ1 > 0, then performing the necessary substitutions and solving, there exists φab such
that V̌ A

a (sa) > V̌ A
b (šb) if ŨA

2 < φab, where φab > max{−v/2, φ̌lb, φ̌a3} and φab ∈ [φa, φ
h
a].

(We omit the expression for φab due to excessive length.) Thus we have s∗ = sa if ŨA
2 ∈

(max{−v/2, φ̌lb}, φab], and s∗ = šb if ŨA
2 ∈ (φab, φ̌

h
b ].
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(iv) ŨA
2 ≤ max{−v/2, φ̌lb}. V̌ A

b (s) is strictly decreasing for s ≥ 0, so if š1 ≤ 0 then the
solution is s∗ = 0. If š1 ≥ 0, the only feasible solutions are the set of region (a) solutions, or
{0, sa, š1}. Thus the solution is s∗ = 0 for ŨA

2 ≤ φa, s
∗ = sa for ŨA

2 ∈ (φa, φ̌
h
a], and s∗ = š1

for ŨA
2 > φ̌ha.

Combining cases (i)-(iv) produces the following optimal scales. For š1 ≤ 0:

s∗ =


š3 if ŨA

2 ∈ (φ̌hb , φ̌c]

šb if ŨA
2 ∈ (−v/2, φ̌hb ]

0 if ŨA
2 ≤ −v/2.

(92)

And for š1 > 0:

s∗ =



š3 if ŨA
2 ∈ (φ̌a3, φ̌c]

sa if ŨA
2 ∈ (φ̌hb , φ̌a3]

šb if ŨA
2 ∈ (φab, φ̌

h
b ]

sa if ŨA
2 ∈ (max{−v/2, φ̌lb}, φab]

š1 if ŨA
2 ∈ (φ̌ha,max{−v/2, φ̌lb}]

sa if ŨA
2 ∈ (φa, φ̌

h
a]

0 if ŨA
2 ≤ φa.

(93)

It is straightforward to verify that at most one of the regions for which s∗ = sa is non-empty.
For subcases (v)-(viii), p > 2q, so the objective V̌ A

b (s) in region (b) is convex and šb is
not a feasible solution. Thus the optimal s is either in region (b) (with possible solutions 0,
š1, š3), or in region (a), as described in subcase (iv). We first consider the subcase where
š1 ≤ 0, so region (a) is empty.

(v) ŨA
2 ≤ φ̌c and š1 ≤ 0. The only possible solutions are 0 and š3. Solving V̌ A

b (š3) ≥ 0
for ŨA

2 produces:

s∗ =


sc if ŨA

2 > φ̌c
š3 if ŨA

2 ∈ (v(q − p)/p, φ̌c]
0 if ŨA

2 ≤ v(q − p)/p.
(94)

For the remaining subcases, š1 > 0, so region (a) is non-empty.
(vi) ŨA

2 ∈ (φ̌ha, φ̌c] and š1 > 0. The only feasible solutions are š1 and š3. Performing the
necessary substitutions and solving, there exists φ̌13 such that V̌ A

a (š1) > V̌ A
b (š3) iff ŨA

2 < φ̌13,
where:

φ̌13 ≡
v [4pq2(1− 2r)2 − (1− r)r(3p3 − 8q3)− p2q(12r2 − 14r + 5)]

2p [(1− r)r(p2 + 4q2) + pq(4r2 − 6r + 3)]
.

It is easily verified that φ̌13 < φ̌c. Thus s∗ = š1 if ŨA
2 ∈ (φ̌ha, φ̌13], and s∗ = š3 if ŨA

2 ∈ (φ̌13, φ̌c],
where the former interval may be empty.

(vii) ŨA
2 ∈ (φa, φ̌

h
a]. In this subcase, the interior solution sa is feasible. Using expression

(91), V̌ A
a (sa) > V̌ A

b (š3) if ŨA
2 > φ̌a3. Thus s∗ = š3 if ŨA

2 ∈ (φ̌a3, φ̌
h
a], and s∗ = sa if

ŨA
2 ∈ (φa, φ̌a3], where either interval may be empty.

(viii) ŨA
2 ≤ φa. Analogously to subcase (iv), V̌ A

a (s) is strictly decreasing for s ≥ 0, so
s∗ = 0.
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Combining cases (i) and (vi)-(viii) produces:

s∗ =



sc if ŨA
2 > φ̌c

š3 if ŨA
2 ∈ (φ̌13, φ̌c]

š1 if ŨA
2 ∈ (φ̌ha, φ̌13]

š3 if ŨA
2 ∈ (φ̌a3, φ̌

h
a]

sa if ŨA
2 ∈ (φa, φ̌a3]

0 if ŨA
2 ≤ φa.

(95)

It is straightforward to verify that at most one of the regions for which s∗ = sa is non-empty.
Summarizing the conditions for cancellation, when š1 > 0 A cancels the project in phase

1 if ŨA
2 ≤ φa. When š1 ≤ 0, A cancels when ŨA

2 ≤ −v/2 if p < 2q and ŨA
2 ≤ v(q − p)/p

if p > 2q. As ŨA
2 is independent of v and negative and decreasing in v2 when r < 1/2, we

conclude that A cancels when v2 is sufficiently large.
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